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1  | INTRODUC TION

Climate change is impacting the forests of western North America 
through tree injury and mortality from droughts, floods, wildfires, 
disease, and insect outbreaks (Allen et al., 2010; Anderegg et al., 
2015; Buotte et al., 2018; van Mantgem et al., 2009; McDowell 
& Allen, 2015; Reyer, Rammig, Brouwers, & Lnagerwisch, 2015). 

There is also mounting evidence that changes in climate are dis‐
rupting local adaptation in plants (Mcgraw et al., 2015; Wilczek et 
al., 2019), with impacts to productivity of long‐lived tree species 
(Leites, Robinson, Rehfeldt, Marshall, & Crookston, 2012; Rehfeldt, 
Ying, Spittlehouse, & Hamilton, 1999) and conservation status of 
vulnerable species (Parmesan, 2006). In response, forest manag‐
ers are seeking guidance on which source populations to use for 
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Abstract
We evaluate genomic data, relative to phenotypic and climatic data, as a basis for 
assisted gene flow and genetic conservation. Using a seedling common garden trial 
of 281 lodgepole pine (Pinus contorta) populations from across western Canada, we 
compare genomic data to phenotypic and climatic data to assess their effectiveness 
in characterizing the climatic drivers and spatial scale of local adaptation in this spe‐
cies. We find that phenotype‐associated loci are equivalent or slightly superior to cli‐
mate data for describing local adaptation in seedling traits, but that climate data are 
superior to genomic data that have not been selected for phenotypic associations. 
We also find agreement between the climate variables associated with genomic vari‐
ation and with 20‐year heights from a long‐term provenance trial, suggesting that 
genomic data may be a viable option for identifying climatic drivers of local adapta‐
tion where phenotypic data are unavailable. Genetic clines associated with the ex‐
perimental traits occur at broad spatial scales, suggesting that standing variation of 
adaptive alleles for this and similar species does not require management at scales 
finer than those indicated by phenotypic data. This study demonstrates that genomic 
data are most useful when paired with phenotypic data, but can also fill some of the 
traditional roles of phenotypic data in management of species for which phenotypic 
trials are not feasible.
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planting, as the long‐practiced “local is best” strategy no longer 
matches trees with the climates to which they are adapted (Aitken 
& Bemmels, 2016). There is also a need to characterize the spatial 
scale and genetic structure of local adaptation to understand the 
capacity of populations to adapt to climate change without human 
intervention (Kawecki, 2008; Kremer et al., 2012; McKenney, 
Pedlar, Lawrence, Campbell, & Hutchinson, 2007). These efforts 
are supported by long‐term provenance trials for some commer‐
cial tree species such as lodgepole pine (Pinus contorta Dougl. ex 
Loud), which accounts for 25% of the approximately 580 million 
seedlings planted in Canada each year (Canadian Forest Service, 
2019). However, the cost and duration of comprehensive prove‐
nance trials has been prohibitive for many tree species of commer‐
cial and conservation importance, and rapid assessment is needed 
for climate change adaptation (Aitken, Yeaman, Holliday, Wang, & 
Curtis‐McLane, 2008). A comparison of alternative genecological 
data sources in a well‐studied species like lodgepole pine can in‐
form the use of these methods in other species.

For centuries, local adaptation has been quantified and managed 
in tree species using phenotypic data from long‐term provenance 
trials and short‐term common gardens (Langlet, 1971). In the past 
two decades, climate data have been used to extend phenotypic in‐
ferences of local adaptation across landscapes and to project mis‐
matches between adaptive variation and future climates (e.g., St. 
Clair & Howe, 2007; Wang, O'Neill, & Aitken, 2010). Genomic data 
are now widely used as a third source of insight into local adaptation 
for nonmodel species (e.g., Exposito‐Alonso et al., 2018; Fitzpatrick 
& Keller, 2015; Sork et al., 2013; Wadgymar et al., 2017). While the 
genomic basis of local adaptation has been extensively studied (Li et 
al., 2017; Sork, 2018), urgently needed applications of genomic data 
to mitigate effects of climate change are in their infancy (Shafer et 
al., 2015). These applications can be advanced by understanding the 
ways in which genomic data complement and overlap with pheno‐
typic and climatic data in characterizing local adaptation.

For most tree populations, the capacity to track suitable cli‐
mates via migration and establishment will be outpaced by the rate 
of climate change (Davis & Shaw, 2001; Gray & Hamann, 2013; 
McLachlan, Clark, & Manos, 2005), with implications for the health 
and productivity of wild forests and those planted for wood or 
carbon sequestration. Assisted gene flow (AGF), the “intentional 
translocation of individuals within a species range to facilitate adap‐
tation to anticipated local conditions” (Aitken & Whitlock, 2013), is a 
strategy for mitigating these deleterious effects of mismatches be‐
tween genotypes and climate. For instance, populations adapted to 
warmer locations of the species' range are faster growing, although 
less cold hardy, for many temperate and boreal species (Aitken & 
Bemmels, 2016; Wang et al., 2010). If genotypes are moved into 
suitable climates, but not so far that they suffer from cold injury or 
other types of maladaptation, this faster growth rate is expected to 
translate into higher survival, better health, and greater productivity 
(e.g., Wadgymar, Cumming, & Weis, 2015). When the motivation for 
planting is conservation, AGF could bolster the demographics and 
genetic diversity of populations of rare species or accelerate stand 

development for habitat and other ecosystem services (Kelly & 
Phillips, 2016; Lunt et al., 2013).

The imperative for AGF with forest trees is acute not only due to 
their economic and ecological value, but also due to the high rate of 
climate change they experience per generation (Aitken et al., 2008; 
Alberto et al., 2013; McLachlan et al., 2005; Petit & Hampe, 2006). 
Fortunately, the feasibility of AGF in forest trees is high due to (a) 
the long history of study and understanding of local adaptation to 
climate in many widespread species (Langlet, 1971; Morgenstern, 
1996); (b) the infrastructure and operational practices that already 
exist for collecting or producing seeds, growing seedlings, and refor‐
esting harvested or otherwise disturbed areas (Aitken & Bemmels, 
2016); and (c) the general lack of strong population structure and iso‐
lation that might lead to outbreeding depression (Howe et al., 2003; 
Mitton	 &	Williams,	 2006;	 Neale	 &	 Savolainen,	 2004;	 Savolainen,	
Pyhäjärvi, & Knurr, 2007). For example, Yeaman et al. (2016) report 
weak genetic differentiation (FST = 0.016) among western Canadian 
lodgepole pine populations.

Effective AGF strategies require an understanding of the major 
climatic drivers of local adaptation and how strongly populations are 
differentiated along these climatic gradients. Forest scientists have 
traditionally used provenance trials—in situ field‐based common gar‐
den experiments that usually involve partial reciprocal transplants—
to understand links between phenotypes under divergent selection 
and the environments driving those differences (Langlet, 1971; Lind, 
Menon, Bolte, Faske, & Eckert, 2018; Morgenstern, 1996). Long‐
term provenance trials allow researchers to disentangle the genetic 
and climatic controls on fitness‐related traits such as survival and 
growth. Further, dendrochronological studies of provenance trials 
can retrospectively identify population responses to climatic vari‐
ability such as frost and drought (e.g., Isaac‐Renton et al., 2018; 
Montwé, Isaac‐Renton, Hamann, & Spiecker, 2018). However, prove‐
nance trials are unfeasible for many species due to the decades‐long 
time frame needed to obtain meaningful data, by the restricted geo‐
graphic and climatic scopes of both provenances and planting sites 
for	many	existing	trials	(Aitken	et	al.,	2008;	Kawecki	&	Ebert,	2004;	
de Villemereuil, Gaggiotti, Mouterde, & Till‐Bottraud, 2015), and the 
resources required for new experiments, including suitable planting 
sites and adequate seed collections (Blanquart, Kaltz, Nuismer, & 
Gandon, 2013; Flanagan, Forester, Latch, Aitken, & Hoban, 2018; 
Morgenstern, 1996).

Seedling common gardens are complementary to traditional 
provenance trials in several ways. Single‐environment seedling com‐
mon gardens can be used to quantify phenotypic differentiation 
among	populations	and	to	develop	transfer	functions	(Matyas,	1994;	
O'Neill, Hamann, & Wang, 2008), while multiple‐environment ex‐
periments can be used to test for environmental forces driving this 
differentiation. Such experiments allow for detailed phenotyping of 
climate‐related traits at vulnerable seedling stages that have import‐
ant fitness consequences for the populations under consideration 
(e.g., phenology, cold or drought hardiness, growth, and allocation 
of biomass; Savolainen et al., 2007, Alberto et al., 2013, and Lind et 
al., 2018).
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Patterns of phenotypic variation among populations were 
traditionally described in geographic terms, but the advent of 
high‐resolution gridded climate data (e.g., PRISM, Daly, Neilson, & 
Phillips,	1994),	has	allowed	more	precise	inferences	of	the	spatial	
patterns of local adaptation (Wang et al., 2010) and has facilitated 
the transition from geography‐based to climate‐based seed trans‐
fer (O'Neill et al., 2017). When integrated with climate change pro‐
jections (e.g., ClimateNA, Wang, Hamann, Spittlehouse, & Carroll, 
2016; and WorldClim, Fick & Hijmans, 2017), climate data provide 
the essential basis for AGF and address some of the shortcomings 
of geographically based seed zones. While generic approaches to 
climate variable selection may provide a first approximation for 
AGF (e.g., niche modeling), information tailored to species‐specific 
patterns relating adaptive variation to climate will better tailor 
AGF strategies (e.g., O'Neill et al., 2017), as climatic factors limit‐
ing a species' niche may not be those driving differentiation among 
populations.

In situations where phenotypic data are unavailable or limited, 
genomic data could be useful for inferring patterns of adaptive 
differentiation among populations and climatic drivers of local ad‐
aptation. Population genomic approaches for detecting adaptive 
variation have become feasible within the last decade (reviewed 
in Sork et al., 2013, Prunier, Verta, & MacKay, 2015, and Lind et 
al., 2018). Next‐generation sequencing methods now allow for the 
genotyping of large numbers of variants (e.g., single nucleotide 
polymorphisms, SNPs) in nonmodel species to inform manage‐
ment and conservation decisions (Flanagan et al., 2018; Lotterhos, 
Yeaman, Degner, Aitken, & Hodgins, 2018; Rellstab, Dauphin, 
Zoller, Brodbeck, & Gugerli, 2019). Genotype–environment as‐
sociation (GEA) approaches can identify both the environmental 
drivers of local adaptation and loci underlying locally adaptive 
traits (De Mita et al., 2013; Rellstab, Gugerli, Eckert, Hancock, & 
Holdregger, 2015; Schoville et al., 2012). Likewise, genotype–phe‐
notype association (GPA) studies can identify loci associated with 
adaptive phenotypes (Holliday et al., 2017; Neale & Savolainen, 
2004;	 Prunier	 et	 al.,	 2015).	 These	methods	 can	 be	 combined	 to	
identify suites of potentially locally adapted loci (e.g., Yeaman et 
al., 2016). Despite the extensive literature on genomic approaches 
for characterizing local adaptation, and the potential for these ap‐
proaches to generate knowledge of local adaptation more quickly 
than provenance trials, we are not aware of any operational uses 
of genomic data to guide seed transfer or AGF. Genomic data can 
also provide unique insights into local adaptation that are not 
available from phenotypic or climatic data alone. For example, 
rangewide phenotypic clines can potentially mask more localized 
allelic clines that underlie adaptive traits (see Box 1). Similarly, the 
spatial structure of standing variation in adaptive alleles—an im‐
portant consideration for AGF and in situ genetic conservation—
can only be inferred from genomic data.

The objective of this study is to evaluate genomic data, relative 
to phenotypic and climatic data, as a basis for assisted gene flow 
and genetic conservation of locally adapted conifers. We address 
three research questions using phenotypic and genomic data from 

281 western Canadian populations of lodgepole pine. Firstly, what 
is the relative value of genomic data versus climatic and geographic 
data in explaining locally adaptive phenotypic variation? We address 
this question by comparing the proportion of variance in four 
seedling traits that can be explained by geographic, climatic, and 
several types of genomic data including a full SNP array, a large set 
of control markers, and loci inferred from both genotype–pheno‐
type associations (GPAs) and genotype–environment associations 
(GEAs). Secondly, can genomic data identify the climatic drivers of 
local adaptation? We use phenotypic data from both a short‐term 
seedling common garden study and a long‐term provenance trial 

Box 1 The structure of allelic variation underlying 
phenotypic clines in adaptive traits

For widespread tree species that experience both strong diver‐
sifying selection and high gene flow, climatic gradients often 
drive clinal variation in phenotypes (Alberto et al., 2013; Endler, 
1977). However, the number and geographic distribution of 
adaptive loci underlying these patterns is, for the most part, 
unknown.
There are two ways for genetic clines to produce a rangewide 
cline in an additive polygenic trait (Figure 1). The first is to have 
concordant clines in the underlying loci, representing a gradual 
rangewide shift in allelic frequency across all underlying loci 
(Figure 1b) that therefore matches the rangewide phenotypic 
cline (Figure 1a). Alternatively, a phenotypic cline can result 
from multiple distinct, localized genetic clines, each providing 
variation sequentially over short sections of the environmen‐
tal gradient (Barton, 1999; see also Box 3 in Savolainen et al., 
2007), as depicted in Figure 1c.
The degree to which local adaptation is structured as local‐
ized, sequential genetic clines has implications for AGF, as this 
may reduce the amount of standing adaptive variation and 
thus adaptive potential. Ultimately, the spatial scale of adap‐
tation is a function of gene flow, selection, and drift. In spe‐
cies with long‐isolated populations and little gene flow, such 
structure could also risk lower compatibility between native 
and transplanted individuals, but outbreeding depression is 
unlikely in widespread, abundant, wind‐pollinated trees (Aitken 
& Whitlock, 2013). If adaptive variation is distributed as con‐
cordant rangewide genetic clines, loci underlying an adaptive 
trait will be polymorphic throughout most of the species range, 
except perhaps at the range margins, or in otherwise isolated or 
small populations. In this case, standing variation should exist 
for adaptive loci that could enable in situ adaptation to climatic 
change, as long as locally novel climatic conditions exist else‐
where in the species range and are not isolated from gene flow. 
Localized clines, in contrast, imply that standing variation in a 
subset of adaptive alleles is limited to only a portion of the spe‐
cies' range.
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to contrast the predicted importance of various climatic drivers 
of phenotypic differentiation to that predicted from genomic data 
(GEA loci). Thirdly, we examine information that is uniquely avail‐
able from genomic data—the genetic clines underlying phenotypic 
clines—to address the question: what is the spatial scale of local ad‐
aptation to climate? These assessments identify the contributions 
that genomic data can make to assisted gene flow and genetic con‐
servation in a changing climate.

2  | METHODS

2.1 | Phenotypic data

2.1.1 | Seedling common garden experiment

The primary phenotypic data in this study originate from a raised bed 
common	garden	of	1,594	 lodgepole	pine	 seedlings	 at	Totem	Field	
at the University of British Columbia in Vancouver, BC. Design, es‐
tablishment, and measurement of the common garden, summarized 

here, are described in detail by MacLachlan, Wang, Hamann, Smets, 
and Aitken (2017). Briefly, seedlots originated from 281 provenances 
representing lodgepole pine's climatic range within British Columbia 
and Alberta (Figure 2e and Figure S13). Seedlots were predomi‐
nantly selected from the range of the Rocky Mountain subspecies 
(P. contorta Dougl. ex Loud. ssp. latifolia [Engelm.] Critchfield), but 
also include the coastal subspecies (P. contorta Dougl. ex Loud. ssp. 
contorta) and the region of hybridization with jack pine (Pinus banksi‐
ana Lamb.) in northern Alberta.

Our study utilizes phenotypic data from four traits: growth initia‐
tion, growth cessation, autumn cold injury, and shoot mass (methods 
in MacLachlan et al., 2017). We removed experimental effects from 
phenotypic values by reporting phenotypes as z‐standardized resid‐
uals of a linear mixed‐effects model, implemented with ASreml‐R 
(Butler, 2009), in which experimental block and location within block 
are random effects:

where Yijk is the phenotypic observation of a trait made on individual i 
grown in the jth block (B), at the kth seedling location (L) nested within 
block (L(B)jk), μ is the experimental mean, and e is the residual error of 
individual i.

2.1.2 | Illingworth provenance trial

We analyzed 20‐year heights from the Illingworth lodgepole pine 
provenance trial to corroborate the inferences from the Vancouver 
seedling common garden with longer‐term data from sites more 
typical	 for	 this	 species.	 This	 trial,	 established	 in	 1974	 by	 the	 BC	
Ministry of Forests (Illingworth, 1978; Wang et al., 2010), tested a 
rangewide	 (New	Mexico	 to	 Yukon)	 collection	 of	 140	 provenances	
at 60 sites in interior British Columbia. We assessed the strength 
of the univariate relationships between population‐mean 20‐year 
height and provenance climate for three contrasting trial sites: one 
each from southern (PETI), central (NILK), and northern (WATS) 
British Columbia (Figure S1). We estimated an adjusted R2 for the 
quadratic relationship between provenance climate and the average 
20‐year heights of the populations at each test site. We estimated 
this relationship for each of the 19 standard climate variables used 
in this study (Table 1). Reported results are the mean R2 over the 
three sites.

2.2 | Climate data

Climate normals for the 1961–1990 period for each provenance in 
the seedling common garden were obtained from ClimateNA (Wang 
et al., 2016), using the latitude, longitude, and elevation of each 
seedlot. The 19 bioclimatic variables used in this study (Table 1) are 
the same as used in previous analyses of genomic datasets from the 
AdapTree Project, selected a priori based on relevance to the species 
biology and environmental variation across provenances (Lotterhos 
et al., 2018; MacLachlan et al., 2017; Yeaman et al., 2016). These 

(1)Yijk=�+Bj+L
(

B
)

jk
+eijk

F I G U R E  1   Illustration of rangewide versus localized genetic 
clines (b, c) underlying a continuous phenotypic cline (a) along an 
environmental gradient (after Barton, 1999)
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variables are not filtered for collinearity, and several variable pairs 
are highly correlated (Table S2).

2.3 | Genomic data

2.3.1 | SNP table

DNA was extracted from tissue of spring needles using a 
Macherey‐Nagel Nucleospin 96 Plant II Core™ Kit, automated on 
an Eppendorf EpMotion 5075™ liquid handling platform. Samples 
were genotyped by Neogen GeneSeek (Lincoln, Nebraska) using 
the AdapTree lodgepole pine Affymetrix Axiom 50K lodgepole 
pine SNP array. SNP discovery for this array was based on the 
lodgepole pine sequence capture dataset described by Suren et al. 
(2016).	It	included	probes	for	the	exons	of	24,388	genes,	as	well	as	
intergenic regions, with intron–exon boundaries identified by map‐
ping the lodgepole pine transcriptome to the loblolly pine (Pinus 
taeda	L.)	v1.01	draft	genome	(Neale	et	al.,	2014;	Zimin	et	al.,	2014).	
SNPs were selected for inclusion based on preliminary GEA and 
GPA analyses using phenotypes for seedling traits (Yeaman et al., 
2016),	differentially	expressed	genes	(Yeaman	et	al.,	2014),	candi‐
date genes for climate adaptation from other conifers, mappable 
SNPs for a linkage map, and a set of randomly selected intergenic 
SNPs to control for population structure. Genotypes from the SNP 
table	were	filtered	to	retain	36,384	SNPs	with	a	minor	allele	fre‐
quency	≥0.01.	Of	these	filtered	loci,	3,934	were	intergenic	control	

SNPs for population structure correction in association analyses. 
Excluding this “control set,” the final candidate adaptive SNP table 
used	in	associations	contained	32,407	SNPs.	We	genotyped	1,594	
seedlings from the Vancouver outdoor seedling common garden 
and an additional 1,906 seedlings from the same 281 provenances 
grown in a separate growth chamber experiment (Liepe, Hamann, 
Smets, Fitzpatrick, & Aitken, 2016), for a total median sample size 
of	11	seedlings	(range	seven	to	24)	for	each	provenance	(Figure	S2).

2.3.2 | Genotype–Phenotype Association (GPA)

We implemented GPA using the phenotypic residual values (from 
Equation 1) for each of the four traits measured at the Vancouver 
outdoor seedling common garden using the linear regression‐based 
mlma function in GCTA (Yang, Lee, Goddard, & Visscher, 2011). We 
corrected for population structure using the grm option of mlma with 
the	3,934	control	SNPs	described	 in	Section	2.3.1.	The	number	of	
SNPs per contig ranged from one to 25. For contigs with more than 
one SNP, we retained the SNP that had the strongest trait associa‐
tion (lowest GCTA p‐value) to reduce redundancies due to physical 
linkage.	This	reduced	the	number	of	available	SNPs	from	32,407	to	
18,525 SNPs. SNPs in the bottom 1% of GPA p‐values for each trait 
were identified as candidate SNPs (n = 186 SNPs per trait). For each 
candidate SNP, the allele that increased the value of a phenotype—
called the positive effect allele (PEA)—was identified from the re‐
gression slope in the GCTA mlma output.

F I G U R E  2   Phenotypic clines of four traits in lodgepole pine seedlings grown in the Vancouver common garden.	A	total	of	1,594	seedlings	
from 281 provenances across British Columbia and Alberta, Canada (gray and black circles), were phenotyped for growth initiation (a), 
growth cessation (b), and 3‐year shoot mass (d). A subset of 922 seedlings from 105 provenances (black circles) were tested for autumn cold 
injury (c). Phenotypic clines (a–d) are plotted on an environmental gradient of mean annual temperature, mapped in (e)
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2.3.3 | Genotype–Environment Association (GEA)

We used bayenv2 (Coop, Witonsky, Rienzo, & Pritchard, 2010; 
Günther & Coop, 2013) to identify loci with evidence for responses 
to environmental selection. The covariance matrix of population 
structure was estimated by averaging three independent runs, 
each using the control set of loci for 120,000 iterations. For each 
centered and standardized environmental variable (Table 1), we 
ran bayenv2 in test mode for one million iterations across three 
independent	chains	for	the	32,407	loci	using	the	covariance	ma‐
trix	 from	 the	 control	 set	 (3,934	 SNPs)	 to	 correct	 for	 population	
structure. To reduce the marker set to one SNP per contig (18,525 
SNPs), we retained the SNP from each contig that had the greatest 
evidence for environmental response (average rank across abso‐
lute rho and Bayes factor [BF] across the three chains; i.e., six val‐
ues). To ensure we isolated only loci with the strongest evidence 
for environmental influence, we re‐ranked these 18,525 loci and 
retained only those that met two criteria for a given environmental 
association: (a) The locus was in the top 300 ranked loci for BF for 
each of the three chains, and (b) it was also in the top 300 ranked 
loci for absolute value of rho for each of the three chains. In addi‐
tion to using these GEA loci toward our objectives, we report the 
number of loci identified using these criteria, as well as the overlap 
between GPA and GEA.

2.4 | Analyses

We present three analyses that correspond to the three research 
questions posed in the final paragraph of the Introduction.

2.4.1 | Phenotypic variation explained by 
geographic, climatic, and genomic data

One way of assessing the relative value of geographic, climatic, and 
genomic data for guiding assisted gene flow and other climate adap‐
tation strategies is to measure the degree to which they can be used 
to statistically explain locally adaptive phenotypic variation. The 
dimensionality of the information in each data source is expected 
to differ: For example, genomewide data may be distributed over 
many more modes of variation than the three dimensions (latitude, 
longitude, and elevation) required to fully describe geographic lo‐
cation. These data sources can be compared on more equal terms 
by extracting their principal components (PCs) and assessing the 
cumulative explanatory content of increasing numbers of PCs as 
predictor variables. Explanatory content in this case is measured as 
proportion of variance explained (R2) by a regression of phenotypic 
values (the response variable) against the PCs of the geographic, 
climatic, or genomic data (the predictor variables). We used multi‐
ple linear regression for this purpose and report the mean R2 of a 
fivefold cross‐validation implemented with the cv.lm function of the 
DAAG package in R (R Core Team, 2017). For comparison, we also 
performed this analysis with Random Forest regression, a regression 
tree ensemble learning algorithm that provides cross‐validated mod‐
eling of nonlinear relationships and variable interactions (Breiman, 
2001). We selected a subset of climate‐associated GPA loci with 
R2 > 0.35 in multiple linear regressions on the first five principal com‐
ponents of the 19 climate variables specified in Table 1. The thresh‐
old of R2 > 0.35 corresponds to the 99.7th percentile of the R2 values 
of the equivalent analysis performed on the control set, as illustrated 
in	Figure	S4.	To	provide	a	balanced	comparison	of	the	control	set	and	
GPA set, we performed a separate rarefaction analysis on mutually 
exclusive random subsamples (n = 186 SNPs) of the control set.

2.4.2 | Climatic drivers of local adaptation

We examine the congruence of genomic versus phenotypic data in 
guiding climatic variable selection by contrasting the proportion of 
variance of individual climate variables that is explained by climate‐
associated genomic loci, seedling common garden phenotypes, 
and long‐term provenance trial phenotypes. For each data source, 
we conducted one regression for each of the 19 climate variables 
(Table 1), in which the response (dependent) variable is the prove‐
nance climates for a single climate variable. The predictor (independ‐
ent) variables for the genomic regressions are the first four principal 
components of the population‐mean minor allele frequencies for 
the top 300 GEA loci associated with the climate variable of interest 
(see Section 2.3.3 for GEA methods). The predictor variables for the 
seedling common garden regressions are the population means of 

TA B L E  1   The set of 19 bioclimatic variables used in this study

Environmental Variable (unit) Abbreviation

Mean annual temperature (°C) MAT

Mean warmest month temperature (°C) MWMT

Mean coldest month temperature (°C) MCMT

Continentality (MWMT minus MCMT) (°C) TD

Mean annual precipitation (mm) MAP

May to September precipitation (mm) MSP

Annual heat:moisture index (MAT + 10)/
(MAP/1,000)) (°C/μm)

AHM

Summer heat:moisture index ((MWMT)/
(MSP/1000)) (°C/μm)

SHM

Degree‐days below 0°C, chilling degree‐days DD_0

Degree‐days above 5°C, growing degree‐days DD5

Number of frost‐free days (days) NFFD

Frost‐free period (days) FFP

The	day	of	the	year	on	which	FFP	begins	(Julian	
date)

bFFP

The	day	of	the	year	on	which	FFP	ends	(Julian	
date)

eFFP

Precipitation	as	snow	between	August	and	July	
(mm)

PAS

Extreme minimum temperature over 30 years (°C) EMT

Extreme maximum temperature over 30 years (°C) EXT

Hargreaves reference evaporation (mm) Eref

Hargreaves climatic moisture deficit (mm) CMD
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the standardized phenotypes for the four traits (see Section 2.1.1). 
The predictor variables for the long‐term provenance trial are the 
20‐year heights measured at three sites of the Illingworth trial (see 
Section 2.1.2). Note that the Illingworth data sample a different 
set of provenances than the genomic and seedling common garden 
data, and thus are essentially independent of these two other data 
sources.	As	in	the	previous	analysis	(Section	2.4.1),	we	used	multiple	
linear regression and report the mean R2 of a fivefold cross‐valida‐
tion for each regression.

2.4.3 | Spatial scale of local adaptation to climate

To characterize the genetic clines associated with the traits meas‐
ured in the seedling common garden, GPA loci were clustered using 
a Euclidean k‐means algorithm (kmeans{stats}; R Core Team, 2017). 
To cluster SNPs, we transposed the population‐mean PEA fre‐
quency data so that SNPs occupied the row (observations) position 
and populations occupied the column (variable) position. Clusters, 
then, are SNPs that have similar allele frequencies across popula‐
tions. Similarity in this configuration is distinct from correlation: 
SNPs with large differences in aggregate allele frequency will be put 
in separate clusters, even if they are very highly correlated. Hence, 
this clustering approach is distinct from standard LD clustering ap‐
proaches based on allele frequency covariance. We use the cluster‐
mean PEA frequency for each population to visually summarize the 
clusters. The mean allelic frequencies of each cluster have reduced 

variance, due to averaging, which creates artificially smooth (non‐
noisy) cluster clines. To restore the variance of the cluster‐mean 
PEA frequency, we multiplied the cluster‐mean PEA frequency for 
each population by the mean standard deviation of the SNPs in the 
cluster. We subjectively determined the optimum number of clus‐
ters (six) by assessing the homogeneity of the PEA clines against the 
mean annual temperature gradient.

To investigate levels of standing variation, we calculated ex‐
pected heterozygosity (He) for each PEA in each population. The 
cluster‐mean He for each population is the mean He for each SNP 
within the cluster. We report standing variation as proportional 
polymorphism for each population: the proportion of SNPs within 
a cluster with He > 0.

3  | RESULTS

3.1 | Phenotypic clines

Population‐mean phenotypes for all four traits measured in the 
Vancouver seedling common garden exhibit moderate to strong 
clines relative to the temperature gradient of the study area (Figure 2 
and	Figure	S14).	Autumn	cold	injury	and	the	timing	of	growth	cessa‐
tion show the strongest relationships with mean annual tempera‐
ture. In general, trees from colder provenances initiated growth 
slightly earlier, ceased growth earlier, achieved less total growth, 
and exhibited less cold injury. Autumn cold injury in particular has 

F I G U R E  3   Seedling common garden 
phenotypic variance explained (R2) 
for four traits by cumulative principal 
components of geography (diamonds), 
climate (circles), and several subsets of 
genomic data from a SNP array (lines). 
Each point is the cross‐validated R2 of a 
multiple linear regression of population‐
mean phenotype against the specified 
number of principal components of the 
predictor data. GEA SNPs (thin black line) 
are the pooled top 300 SNPs based on 
Bayes factor from each of the 19 climate 
variables. GPA SNPs (thick black line) 
are the top 1% of coding‐region SNPs 
(maximum of one SNP per contig) based 
on the p‐value of a population‐structure‐
corrected linear association of allele 
frequencies to seedling phenotypes. 
Climate‐associated GPA SNPs (black 
dashed line) are GPA SNPs with a linear 
association with climate (see Section 
2.4.1)	and	have	n	=	151,	144,	125,	and	
44	for	the	four	traits,	respectively.	The	
control set is shown as a gray dashed line
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a very strong relationship (r = .83) to mean annual temperature. 
Within‐population variation among individuals is generally uncorre‐
lated among the four traits (Figure S3). However, within‐population 
variation of shoot mass is positively correlated with growth cessa‐
tion day (r = .57) and weakly but significantly negatively correlated 
with growth initiation day (r	=	−0.18,	p	=	3E−12).	This	result	may	be	
due to the benign maritime climate of the common garden; seedlings 
with a longer growth period are not penalized by environmental con‐
straints such as growing season frosts. Correlations of among‐popu‐
lation variation in growth cessation, fall cold injury, and shoot mass 
are moderate to strong. Growth initiation is poorly correlated with 
the other traits.

3.2 | Phenotypic variation explained by geographic, 
climatic, and genomic data

The extent to which geographic, climatic, and genomic data explain 
phenotypic variation differs among traits (Figure 3). Differences 
in the explained phenotypic variation among traits generally ex‐
ceed the differences among the three types of data (geographic, 
climatic, and genomic) within traits, consistent with the relative 
strengths of the phenotypic clines in Figure 2. Nevertheless, there 
are important differences in the relative explanatory content of 
geographic, climatic, and genomic data among traits. In gen‐
eral, geographic variables (yellow diamonds) are as predictive of 
seedling phenotypes as climatic variables (gray circles, Figure 3), 

consistent with local adaptation to geographically based climate in 
this species. The exception is growth initiation, where geographic 
variables are more explanatory than climate. The GPA SNPs (solid 
black line, Figure 3) are more explanatory than climate and geogra‐
phy in growth initiation and shoot mass but not growth cessation, 
where they are equivalent, and cold injury, where they are slightly 
inferior.

The relative explanatory power of different types of genomic 
data is consistent among traits (Figure 3) and provides several in‐
sights. GPA SNPs (solid black line) consistently have the highest 
explanatory power, as would be expected. Since the GPA SNPs 
are a subset of the full array (solid gray line), the difference be‐
tween the GPA set and the full SNP array indicates the value 
of extracting the relevant genetic information from phenotypic 
associations. The climate‐associated GPA SNPs (black dashed 
line, Figure 3) explain less slightly less phenotypic variation than 
the full set of GPA SNPs, and substantially less for shoot mass. 
Climate‐associated GPA SNPs explain more phenotypic variation 
than climate variables for growth initiation, but less for shoot 
mass. The GEA SNPs identified using bayenv2 (Table S1) gener‐
ally have low explanatory power to predict phenotypic variation, 
though for growth initiation, they have relatively high explanatory 
power equivalent to the GPA SNPs. There is a high overlap of GEA 
with GPA loci, with an average of 62.1% of GEA SNPs from var‐
ious environmental variables found within 1,000 bp of GPA loci 
(range 0% for NFFD to 88% for EXT; SD = 21.2%), and a total of 

F I G U R E  4   Climatic variable selection based on genomic versus phenotypic data in (a) the Vancouver seedling common garden and (b) the 
Illingworth provenance trials. Variance explained is the cross‐validated R2 of a multiple linear regression of each climate variable (response 
variable) against the phenotypic or genomic predictor variable set. Genomic data (predictor variables for the y‐axis analyses) are four 
principal components of the minor allele frequencies for the top 300 GEA SNPs identified by bayenv2 for each climate variable. Phenotypic 
data (predictor variables for the x‐axis analyses) for panel A are population‐mean phenotypes for the four common garden traits presented 
in Figure 2. Phenotypic predictor data for panel B are 20‐year heights of the Illingworth lodgepole pine provenance trial. Climate variable 
acronyms are described in Table 1
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44.5%	of	GPA	SNPs	found	within	1,000	bp	of	the	GEA	loci	found	
across environmental variables (Table S1). This is another line of 
evidence of the strong role of climate in driving phenotypic varia‐
tion	among	populations.	Figures	S14–S16	show	PCs	1–6	of	allelic	
variation in the full SNP array, the control set, and the pooled GPA 
loci, respectively.

Both the control set and the full SNP array have explanatory re‐
lationships with phenotypes, as would be expected from population 
structure alone. However, these relationships are not as strong as 
those with geographic, climatic, and filtered genomic data (Figure 3). 
An equivalent analysis to Figure 3 using Random Forest regression 
instead of linear regression demonstrates that both the control set 
and full SNP array contain almost as much nonlinear explanatory 
information as the climatic and geographic variables (Figure S5). 
Further, some subsets of the control set exhibit linear relationships 
to phenotype that are as strong and stable as the relationships of 
GEA loci to phenotype (Figure S6).

Traits differ substantially in the dimensionality of their associ‐
ated genomic information, that is, the number of PCs at which fur‐
ther gains in explanatory information are not achieved. Explainable 
variation in growth initiation, growth cessation, and autumn cold in‐
jury are predominantly described by the first two PCs (Figure 3). In 
contrast, six PCs are required to describe the explainable variation 
in shoot mass. The dimensionality of explanatory information in the 
different traits speaks to the complexity of genetic controls on the 
trait.

3.3 | Climatic drivers of local adaptation

Genotype–environment association loci and short‐term (3‐year) 
seedling common garden phenotypes have moderately similar 
relationships (r	 =	 .56)	 to	 the	 19	 climate	 variables	 (Figure	 4a).	 This	
congruence is much stronger (r = .90) between the GEA loci and 
the	longer‐term	(20‐year)	provenance	trial	 (Figure	4b).	Across	both	
phenotypic datasets and the genomic GEA data, there is agreement 
that local adaptation is strongly associated with winter temperature 
variables: mean temperature of the coldest month (MCMT), degree‐
days below 0°C (DD_0), winter–summer temperature contrast (TD), 
and extreme minimum temperature (EMT). Note that mean annual 
temperature can be considered primarily a winter variable in this 
study area because spatial variation in mean temperature along the 
latitudinal gradient of the study area is much stronger in winter than 
in	other	seasons.	In	the	Vancouver	common	garden	(Figure	4a),	this	
congruence between genotypic and phenotypic relationships to 
climate variables is broken by summer temperature variables (Eref, 
EXT, DD5, and MWMT), which have moderate associations with 
phenotypes (x‐axis) but low associations with genotypes (y‐axis), and 
by mean annual precipitation (MAP), which is moderately associated 
with genomic but not phenotypic variation. The same pattern of 
these relationships is produced using either the full SNP array or the 
control SNPs in place of the GEA SNPs (Figures S6 and S7, respec‐
tively). The genomic data and seedling common garden phenotypes 
have covariation with the first five principal components of the 19 

F I G U R E  5   Genetic clines associated with autumn cold injury. (a–f) The 125 climate‐associated GWAS SNPs for autumn cold injury are 
clustered based on similarities in positive effect allele (PEA) frequencies across populations (n = 281). Each point is the mean of the PEA 
frequencies across clustered SNPs for one population, with a correction applied to restore the variance of the PEA frequencies following 
averaging. The colored bands in each plot, superimposed in panel g, are locally weighted 0.5‐standard deviation prediction intervals. Recall 
that the y‐axes are the frequency of PEAs that are associated with increased cold injury
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climate variables and show moderate agreement on the strength of 
this covariation (Figure S11).

3.4 | Spatial scale of local adaptation to climate

All four seedling common garden traits exhibit linear phenotypic 
clines over many of the climatic gradients of the study area, where 
the strongest of these clines is autumn cold injury relative to mean 
annual temperature (Figure 2c; r = .83). To detect whether ge‐
netic clines for cold injury loci along environmental gradients are 
rangewide or localized (sensu Box 1), we examined the n = 125 locus 
subset of the 186 cold injury GPA candidates that are also moder‐
ately associated with the 19 climate variables (linear R2 > 0.35; Figure 
S4).	We	clustered	these	125	loci	into	six	clusters	based	on	their	ab‐
solute PEA frequencies across populations (Figure S11). The popula‐
tion‐mean PEA frequencies of these six clusters have distinct clines 
(Figure 5) relative to the gradient in mean annual temperature across 
the	 study	 area	 (Figure	2).	Clusters	 2,	 3,	 4,	 and	5	 show	 little	 clinal	
variation across provenance temperatures below 0°C, but have a cli‐
nal increase in PEA frequency across higher temperatures (Figure 5). 

Cluster 6 has essentially the opposite pattern, in that it shows clinal 
variation almost exclusively below 2°C mean annual temperature. 
The adaptive variation in cluster 6 is of interest, in the context of 
standing variation, because it is localized to a high degree relative 
to the other clusters. Cluster 1 has an inverse pattern to cluster 6 
relative to provenance climate, and primarily reflects variation as‐
sociated with the coastal ssp. contorta, which occur at MAT > 6°C. 
Cluster 2 exhibits increased variation in the interior of BC, which is 
reversed in the warmer climates of the coast. Results equivalent to 
Figure 5 for the other three traits are provided in Figures S18–S20.

To contrast the extent of rangewide versus localized clines, the 
geographic	 patterns	 of	 allele	 frequencies	 in	 clusters	 4	 and	 6	 are	
shown	 in	 Figure	 6.	 Cluster	 4	 represents	 the	 dominant	 rangewide	
genetic cline over the study area and is largely parallel with clus‐
ters	3	and	5.	Cluster	6	 is	 the	 complementary	 cline	 to	 cluster	4	as	
it reflects adaptive variation for cold hardiness in boreal but not 
temperate	 populations.	 Cluster	 4	 has	 a	 strong	 cline	 with	 respect	
to the joint thermal gradient of latitude and elevation (Figure 6c). 
Putatively adaptive alleles of cluster 6 are predominantly found in 
the Boreal climates of Northern Alberta, Northeastern BC, and the 

F I G U R E  6   Contrasting geographic 
patterns of standing variation in 
rangewide and localized genetic clines 
associated with autumn cold injury. A 
rangewide	cline	(cluster	4,	left	column)	and	
a localized cline (cluster 6, right column) 
relative to the mean annual temperature 
gradient (MAT) in the sampled populations 
(a and b, respectively) as previously 
shown	in	Figure	4d,f.	These	clines	are	also	
compared across latitude and elevation 
(c, d), and latitude and longitude (e, f). 
Populations are colored with respect to 
PEA frequency (alleles that are associated 
with an increase in autumn cold injury)
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eastern foothills of the Rocky Mountains (Figure 6f). Unlike cluster 
4,	cluster	6	does	not	have	a	pronounced	elevational	cline	at	low	lati‐
tudes (Figure 6d). Except for two coastal populations, all populations 
have standing variation in some of the adaptive alleles in each clus‐
ter, though several populations west of the Rocky Mountains (i.e., 
in British Columbia) have no standing variation in at least half of the 
cluster 6 loci (Figure S12).

4  | DISCUSSION

This study uses a large sample of P. contorta populations from 
across western Canada to evaluate genomic data, relative to phe‐
notypic and climatic data, as a basis for assisted gene flow and 
genetic conservation. In Introduction, we posed three research 
questions related to this objective. The first was: what is the rel‐
ative value of genomic data versus climatic and geographic data in 
explaining variation in locally adapted traits? For all traits, the con‐
trol and GEA SNPs explained far less variation than climate, GPA 
SNPs, or even geographic coordinates (Figure 3). This suggests 
that genomic data are most useful as a complement to, rather than 
a replacement for, phenotypic and climatic data as guidance for 
assisted migration. The second question was: can genomic data 
identify the climatic drivers of local adaptation? Genotype–environ‐
ment associations had strong agreement with both a long‐term 
provenance trial and a short‐term seedling common garden on 
the climatic drivers of local adaptation, namely winter tempera‐
ture‐related	variables	(Figure	4).	This	suggests	that	genomic	data	
can be a viable option for identifying the key climatic controls on 
productivity and lifetime fitness and may even be more reliable 
for this purpose than seedling traits in some contexts (Figure S9). 
The third question was: what is the spatial scale of local adaptation 
in climatically adaptive traits? We did not find compelling evidence 
for highly localized genetic clines at scales that would constrain 
local seed transfer to scales finer than those indicated by pheno‐
typic data or necessitate geographically small genetic conserva‐
tion units (Figures 5 and 6).

4.1 | Phenotypic variation explained by geographic, 
climatic, and genomic data

The predictive power of climate variables, geography, and genotypes 
varied greatly among seedling traits. It is widely recognized that cold 
hardiness shows strong population differentiation in most temper‐
ate and boreal tree species (Aitken & Bemmels, 2016; Alberto et al., 
2013; Howe et al., 2003), and we found strong population differen‐
tiation for cold injury, as well as high predictability of cold injury from 
climatic, geographic, and GPA SNP data (R2 > 0.6). However, the re‐
maining traits were not as strongly predicted with any of the given 
data (R2 < 0.5; Figure 3). Variability in the predictive ability among 
traits for a given data source or among data sources for a given trait 
may be due to several factors (discussed in Lind et al., 2018): (a) how 
well each phenotype is correlated with lifetime fitness; (b) the degree 

to which the trait is polygenic; (c) the mode of gene action underly‐
ing the genetic architecture of the trait (e.g., additive, epistatic/GxE, 
or pleiotropic); (d) the primary source of genetic variation in a trait 
(i.e., protein‐coding or regulatory regions); (e) the degree to which 
selection has structured variation within the species (i.e., the joint 
effects of selective forces and demographic dynamics); or (f) short‐
comings of methodologies (e.g., correcting for population structure 
that could remove adaptive signals that covary with demography).

While this study focused on relatively few seedling traits, there 
are undoubtedly many other traits at various life history stages that 
have population differences associated with local climate (e.g., bi‐
otic and abiotic responses, reproduction, and tree form). Our GPAs 
specifically identify SNPs associated with our focal seedling traits, 
and so it is not surprising that the GPA SNPs from individual seed‐
ling traits were better predictors of a given trait than the GEA SNPs 
(Figure 3). Even so, the GPA SNPs were consistently the best set of 
markers for explaining variation in phenotypes (Figure 3), emphasiz‐
ing the added value of these candidate loci. Climate also consistently 
explained phenotypic variation well, relative to genomic data, for 
traits other than growth initiation. Geographic coordinates (latitude, 
longitude, and elevation) predicted all seedling traits quite well, re‐
flecting the success found in the vast body of older genecological 
literature in forest trees that used geographic variables as a proxy for 
climate before spatial climatic data became widely available.

In line with expectations of polygenic architectures for most of 
the traits (i.e., causative sites throughout the genome), the entire 
SNP array (~31K SNPs) was able to predict some of the variation 
in these traits. Control SNPs selected randomly from noncoding 
regions of the genome were also able to explain a substantial por‐
tion of phenotypic variation in all traits except shoot mass (Figure 3) 
and were equivalent to all other data sources as a predictor set for 
Random Forest regressions (Figure S5). The predictive power of con‐
trol SNPs emphasizes the potential to confound neutral population 
structure with adaptive variation or to overcorrect for population 
structure, and, as a result, overlook adaptive markers, particularly 
for species whose demographic history is aligned with environmen‐
tal gradients. In this case, the postglacial expansion of lodgepole pine 
likely matches the strong latitudinal gradient of winter temperatures. 
Since the analyses identifying GEA and GPA SNPs both adjusted for 
population structure, we may have eliminated some loci involved in 
local adaptation from consideration through this adjustment. Even 
so, given the choice of markers used to correct for structure, our hits 
likely represent a conservative approach. Combined with the signal 
from	the	two	common	garden	experiments	(Figure	4),	as	well	as	the	
overlap of loci between GEA and GPA despite a large marker set 
used for testing (Table S1), our results suggest strong influence from 
winter‐related variables driving adaptive genetic variation.

4.2 | Climatic drivers of local adaptation

To design an assisted gene flow strategy that matches populations 
with suitable sites based on current and near‐future climates, it is 
important to understand the climatic factors that have driven local 
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adaptation. Once the key climatic factors for local adaptation are 
identified, a climate distance metric can be constructed to match 
seed sources with sites (e.g., Climate‐Based Seed Transfer, O'Neill 
et al., 2017, and Seedlot Selection Tool, https ://seedl otsel ectio ntool.
org/sst/). Our GEA results for individual climate variables ranked the 
variable importance similar to those identified based on growth in a 
20‐year field provenance trial and, to a lesser extent, to our seedling 
common garden phenotypes. Both sets of phenotypic data identi‐
fied winter temperature variables including mean coldest month 
temperature, degree‐days below 0°, and extreme minimum tem‐
perature as important drivers of local adaptation. Other studies of 
these provenances (e.g., Liepe et al., 2016) and other populations of 
lodgepole pine in western Canada (e.g., McLane, Daniels, & Aitken, 
2011; Rweyongeza, Dhir, Barnhardt, Hansen, & Yang, 2007; Wang 
et al., 2010) corroborate these climatic variables as strong historic 
drivers of adaptation and differentiation, and at relatively broad 
spatial scales (Liepe et al., 2016). Nevertheless, the result that our 
set of control markers produced nearly equivalent climate variable 
rankings	to	the	GEA	set	 (Figure	4	vs.	Figure	S8)	 indicates	that	the	
substitution of genomic for phenotypic data needs to be approached 
with some caution.

Future pressures from drought are expected to become increas‐
ingly relevant for lodgepole pine populations as climate change pro‐
gresses over the next century (McLane et al., 2011; Monserud, Huang, 
& Yang, 2006; Monserud, Yang, Huang, & Tchebakova, 2008). GEA–
climate relationships were stronger than field phenotype–climate re‐
lationships for summer precipitation‐related variables such as mean 
summer	precipitation	and	cumulative	moisture	deficit	(Figure	4).	This	
suggests that water availability might result in diversifying selection 
across populations. A previous study with these populations found 
no significant population variation for drought‐related seedling traits 
including stable carbon isotope ratios and biomass allocation to roots 
(Liepe et al., 2016). However, it did not include populations from drier 
provenances in the southern portion of the species range, and these 
may show stronger drought adaptation. Drought hardiness is also 
difficult to phenotype as there are many potential component traits 
involved in tolerance or avoidance.

None of the phenotypes we analyzed represent lifetime fitness. 
Nonetheless, the concordance of climatic drivers of seedling phe‐
notypes, 20‐year growth in the field, and genomic data are encour‐
aging	(Figure	4).	While	it	 is	not	feasible	to	assess	lifetime	fitness	in	
long‐lived forest trees or to determine all of the component traits 
affecting fitness (Alberto et al., 2013), seedling shoot mass is likely 
one of these component traits. Trees that achieve larger sizes within 
the available frost‐free period for growth will generally have higher 
fecundity as they have larger crowns with more sites for pollen and 
seed cone production (Aitken & Bemmels, 2016). Forest managers 
are also ultimately interested in tree size for wood production or car‐
bon sequestration, and trees with good juvenile growth are likely to 
grow well in a restoration context. In our study, the ability of climatic 
and genomic data to describe among‐population phenotypic varia‐
tion was lower for shoot mass than for the other seedling traits. Tree 
size is the product of many other component traits affecting seedling 

health and vigor, including phenology (which we analyzed directly as 
growth initiation and cessation), abiotic stress tolerance (including 
cold injury), resistance to insects and diseases, resource acquisition 
and allocation, physiological processes, and cell density. It is likely 
that loci underlying variation in growth have pleiotropic effects and 
that they respond to selection through trade‐offs in the various fit‐
ness consequences of component traits contributing to growth.

Which of these data sources—seedling phenotypes, field phe‐
notypes, or genotypes—should be considered the standard against 
which the others are compared? One could argue that field‐based 
growth over two decades better reflects meaningful population dif‐
ferences expressed in typical habitat. On the other hand, the preci‐
sion phenotyping of seedlings for phenology and cold hardiness is 
difficult or impossible in long‐term field trials, and these traits should 
be strongly linked with climate for boreal, sub‐boreal, and montane 
species where they are critical to fitness. Finally, it may be that 
the GEA–climate patterns provide the best indication of long‐term 
selection as they may reflect periodic, episodic extreme climatic 
events causing injury and mortality that are not observed even over 
long field experiments. In any event, given the extensive overlap in 
top climate variables among these methods, we suggest that GEA 
approaches can rapidly provide information on climatic drivers of 
local adaptation for the design of assisted gene flow strategies when 
phenotypic data are not available. However, the potential for popu‐
lation structure to confound GEA approaches and the poor perfor‐
mance of GEA loci in predicting locally adapted seedling traits both 
suggest caution is warranted.

4.3 | Spatial scale of local adaptation to climate

We evaluated variation at adaptive loci against a model of localized 
versus rangewide genetic clines (Figure 1; sensu Barton, 1999) along 
climatic temperature gradients (Figure 2). We found evidence of 
both localized and broad‐scale genetic clines for clusters of SNPs 
associated	with	autumn	cold	injury	(Figures	5	and	S4).	Overall,	the	
genetic clines associated with autumn cold injury do not exhibit the 
strongly sequential, localized clines envisioned by Barton (1999) and 
Savolainen et al. (2007), nor are all genetic clines strictly coincident 
across the range of environments, but rather fit a model intermedi‐
ate to the hypothetical scenarios illustrated in Figure 1b,c. Our study 
sampled provenances over only half of the species' latitudinal range. 
It may be that sequential localized genetic clines would be more evi‐
dent if our study included the full species range. While some clines 
for the major adaptive clusters we identified are largely variable 
across	the	range,	there	is	a	group	of	42	SNPs	that	all	show	clines	in	
the boreal region of the study area, but not in warmer areas (cluster 
6 in Figure 5). These clines complement those of several other clus‐
ters for SNPs that are relatively invariant in the boreal portion of the 
range	but	vary	in	warmer	regions	(clusters	1,	3,	and	4	in	Figure	5).	
For instance, cluster 6 alleles conferring cold hardiness (the alternate 
PEA allele) have reduced standing variation in warmer provenances 
west of the Rocky Mountains and follow both elevational and lati‐
tudinal patterns of temperature clines (Figures 5 and 6). Failure to 

https://seedlotselectiontool.org/sst/
https://seedlotselectiontool.org/sst/
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detect polymorphisms for these SNPs in these populations may be 
an artifact of small sample sizes (6 < n < 13) in most of the studied 
populations (Figure S2). Nevertheless, these results indicate low ge‐
netic diversity in the boreal‐associated alleles of cluster 6 in these 
locations. The absence of these alleles may be a limiting factor in 
seed transfer from sub‐boreal to boreal climates, or across the Rocky 
Mountains. This localization may be indicative of alleles conferring 
additional cold hardiness in the coldest areas of the sampled range 
that may have trade‐offs in the warmer areas (e.g., via pleiotropy or 
GxE such as conditional neutrality). Even so, the alleles in cluster 6 
were not associated with the other phenotypes in our study (while 
all other clusters had associations to at least three phenotypes). 
Future investigation is warranted, as the lack of pleiotropy inferred 
from associations to multiple phenotypes in cluster 6 may be a func‐
tion of the cluster's sample size, of linkage to unsampled antagonistic 
(regulatory) sites, conditional neutrality underlying gene action (or 
other GxE), of unmeasured phenotypes important to adaptation, or 
of other statistical and methodological shortcomings.

While our results suggest that localized genetic clines (Figure 5), 
and populations associated with low genetic diversity in adaptive 
alleles (Figures 6 and S8), are evident in lodgepole pine, we did not 
find compelling evidence for localized genetic clines at scales that 
would constrain local seed transfer more narrowly than previous es‐
timates of adaptive scales based on phenotypes (cf.	Figure	4	in	Liepe	
et al., 2016; Wang et al., 2010; Ukrainetz, Yanchuk, & Mansfield, 
2018) or current seed transfer policy would suggest (O'Neill et al., 
2017; Ying & Yanchuk, 2006), nor at scales that would necessi‐
tate highly localized spatial genetic conservation units. At present, 
British Columbia's genetic conservation program for forest trees 
uses British Columbia's 16 Biogeoclimatic Ecological Classification 
(BEC) zones to assess adequacy of both in situ (Hamann, Aitken, & 
Yanchuk,	2004;	Chourmouzis,	Yanchuk,	Hamann,	Smets,	&	Aitken,	
2019) and ex situ (Krakowski et al., 2009) genetic conservations for 
all 50 of BC's native tree species. If other species show patterns of 
distribution of adaptive diversity similar to lodgepole pine, contin‐
ued management of conservation populations within these ecologi‐
cal zones should be sufficient (Liepe et al., 2016).

4.4 | Conclusions

Historically, the spatial scales over which local adaptation occurs 
have been inferred from both short‐ and long‐term transplant ex‐
periments. Only recently has the technology been available to study 
the spatial distribution of adaptive variation at loci across the ge‐
nome. This new source of insight into local adaptation comes at 
a time when climate change creates an imperative for mitigating 
inevitable risks of productivity loss and threats to natural popula‐
tions across forestry, agricultural, and natural systems. The common 
sources of data used toward such purposes, such as field prov‐
enance trials, seedling common gardens, scale‐free spatial climatic 
data, and genomic studies, however, come with varied logistical 
limitations and are not always feasible or appropriate in every situ‐
ation. The large number of phenotyped and genotyped populations 

in this study allows us to quantify and compare detailed spatial and 
climatic patterns of adaptive variation, and to assess their utility for 
planning assisted gene flow, the need for in situ and ex situ genetic 
conservation, and the potential for populations to adapt to new cli‐
mates without intervention. We found that climate, geography, and 
SNPs associated with climate‐related seedling phenotypes within 
populations were good predictors of variation among populations 
and could all play an effective role in designing assisted gene flow 
strategies. SNPs associated with climate alone were not good pre‐
dictors of these seedling traits; however, they did identify the same 
primary climatic drivers of adaptation as common garden experi‐
ments and so could inform variable selection for estimating climatic 
transfer distances for assisted gene flow. Our analysis of genetic 
clines identified a set of alleles exclusive to boreal populations that 
are associated with seedling cold hardiness, demonstrating the util‐
ity of genomic analysis in identifying potential constraints to seed 
transfer. While our data are for lodgepole pine, we hope these 
results will inform and accelerate climate adaptation efforts with 
other widespread species.
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