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The genomics of local adaptation in trees: are we out of the woods yet?
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Abstract
There is substantial interest in uncovering the genetic basis of the traits underlying adaptive responses in tree species, as this
information will ultimately aid conservation and industrial endeavors across populations, generations, and environments.
Fundamentally, the characterization of such genetic bases is within the context of a genetic architecture, which describes the
mutlidimensional relationship between genotype and phenotype through the identification of causative variants, their relative
location within a genome, expression, pleiotropic effect, environmental influence, and degree of dominance, epistasis, and
additivity. Here, we review theory related to polygenic local adaptation and contextualize these expectations with methods often
used to uncover the genetic basis of traits important to tree conservation and industry. A broad literature survey suggests that most
tree traits generally exhibit considerable heritability, that underlying quantitative genetic variation (QST) is structured more so
across populations than neutral expectations (FST) in 69% of comparisons across the literature, and that single-locus associations
often exhibit small estimated per-locus effects. Together, these results suggest differential selection across populations often acts
on tree phenotypes underlain by polygenic architectures consisting of numerous small to moderate effect loci. Using this
synthesis, we highlight the limits of using solely single-locus approaches to describe underlying genetic architectures and close
by addressing hurdles and promising alternatives towards such goals, remark upon the current state of tree genomics, and identify
future directions for this field. Importantly, we argue, the success of future endeavors should not be predicated on the shortcom-
ings of past studies and will instead be dependent upon the application of theory to empiricism, standardized reporting, central-
ized open-access databases, and continual input and review of the community’s research.
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Introduction

Trees are plants with an arborescent habit, which is loosely
defined as a tall-statured growth form usually producing wood
(reviewed by Petit and Hampe 2006). Approximately 15 to
25% of plant taxa are classified as trees (Oldfield et al. 1998;

Grandtner 2005; Wortley and Scotland 2004), with forested
ecosystems accounting for approximately 30% of terrestrial
vegetation (Costanza et al. 1997) and providing habitat for
terrestrial biodiversity. Indeed, trees play important ecological
roles in diverse communities across the globe, such as vertical
structural habitat, seeds for wildlife forage, forest cover, the
production of oxygen, carbon sequestration, air and water fil-
tration, as well as the reduction of erosion, protracting snow-
melt, and desertification. Of these, biological roles are ulti-
mately defined by a set of life history characteristics common
to most tree species (Petit and Hampe 2006). These include
predominantly outcrossing mating systems with high levels of
gene flow and fecundities, as well as long lifespans and gen-
eration times (Loehle 1988; Mitton and Williams 2006;
Savolainen et al. 2007), although these may differ in, for ex-
ample, clades of tropical trees. As a result, tree species typi-
cally have large effective population sizes, moderate to high
levels of genetic diversity, and frequent occurrences of locally
adapted ecotypes (Savolainen et al. 2007; Alberto et al. 2013;
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Sork et al. 2013; Boshier et al. 2015; Prunier et al. 2015;
Holliday et al. 2017). Across species, however, rates of mor-
phological and molecular evolution tend to be slow (reviewed
in De La Torre et al. 2017). Additionally, genome size varies
enormously across species of trees, ranging from 0.4Gbp to
31 Gbp (reviewed in Neale et al. 2017). Recent sequencing
efforts in gymnosperms, which represent the largest tree ge-
nomes, reveal that much of genome size variation is due to
transposable element dynamics and gene family evolution
(Leitch and Leitch 2012; Morse et al. 2009; Nystedt et al.
2013; Prunier et al. 2015; Neale et al. 2017) where duplication
events of select gene families may contribute to the ability of
trees to colonize marginalized habitats (Leitch and Leitch
2012; Prunier et al. 2015; Neale et al. 2017).

In trees, the general presence of large geographical ranges
and extensive gene flow also provides an ideal setting to dis-
entangle neutral from selective evolutionary processes (Neale
and Kremer 2011). Indeed, their longevity and wide and het-
erogeneous geographical distributions lend trees suitable for
addressing several key evolutionary questions about the im-
portance of historical climatic fluctuations, and local adapta-
tion involving shifts in allele frequencies (Lotterhos and
Whitlock 2014; Savolainen et al. 2007, 2013; Platt et al.
2010). As we detail in subsequent sections, evidence consis-
tent with local adaptation in trees is ubiquitous, even across
fine spatial scales where it had been hypothesized that gene
flow may overcome selection of locally favored alleles (e.g.,
Mitton et al. 1998; Budde et al. 2014; Csilléry et al. 2014;
Vizcaíno-Palomar et al. 2014; Eckert et al. 2015; Holliday
et al. 2016; Roschanski et al. 2016; Lind et al. 2017).

Quantitative phenotypes are often used as a proxy for total
lifetime fitness, which is composed of two broad components:
survival and reproduction. Since most quantitative traits are
related to some component of total lifetime fitness, they are
often used to assess potential for local adaptation. For many
plant taxa, selection pressures are expected to be strongest for
variation in survival during the juvenile stages of development
(Donohue et al. 2010), particularly for those taxa with high
reproductive output, as is the case for many tree species. As
such, juvenile stages in plants have been found to contribute
substantially to total lifetime fitness (Postma andÅgren 2016).
Phenotypic traits associated with juvenile survival have thus
received the majority of genetic research focus in trees, par-
ticularly due to their long-lived nature. Such studies have led
to intriguing insights gained through a long history of com-
mon garden experimentation (Langlet 1971; Morgenstern
1996). For example, traits such as growth (e.g., height and
diameter), form (e.g., specific gravity, straightness), phenolo-
gy (e.g., bud flush, bud set), juvenile performance (e.g., ger-
mination rate, seed traits), and physiology (e.g., cold hardi-
ness, water use efficiency) have all been shown to be under
moderate to high genetic control (reviewed in Cornelius 1994;
Howe et al. 2003; Alberto et al. 2013; this review). Variation

for these traits is also often partitioned among populations
(this review), despite the vast majority of neutral variation
remaining within populations (Howe et al. 2003; Neale and
Savolainen 2004). With few exceptions (e.g., major gene re-
sistance in the white pine-blister rust pathosystem; Kinloch Jr
et al. 1970; Liu et al. 2017), variation for these traits forms a
continuum across individuals, thus implying that the underly-
ing genetic architecture is composed of a large number of
small to moderate effect loci (i.e., a polygenic architecture;
concept reviewed in Savolainen et al. 2007, 2013; Gagnaire
and Gaggiotti 2016; Hoban et al. 2016; Timpson et al. 2017).
There is some uncertainty, however, concerning the properties
of the effect size distributions comprising polygenic architec-
tures (sensu Fisher 1930; Kimura 1983; Orr 1998), the relative
importance of various forms of gene actions (e.g., dominance,
epistasis) in producing trait variation (Crow 2010; Hansen
2013), how these interact to affect the evolution of polygenic
architectures in natural populations (Mackay 2001; Hansen
2006), and how these factors will ultimately influence evolu-
tionary processes and outcomes in forest trees (Savolainen
et al. 2007; Sork et al. 2013; Prunier et al. 2015).
Considerable strides, made in the past through genotype-
phenotype-environment studies (sensu Sork et al. 2013), have
contributed intriguing insight into the genomic basis of local
adaptation for tree species. However, given the large genome
size of many tree species, such methods have been criticized
as lacking in power and sufficient coverage needed to detect
small effect loci, which is further exacerbated by rapid decay
of linkage disequilibrium (LD) in most forest trees (Mackay
et al. 2009; Savolainen et al. 2007). Despite these limitations,
association studies have beenmoderately successful in linking
genotypes and phenotypes, including providing information
for making inferences about local adaptation.

In this review, we set out to summarize theory related to
polygenic local adaptation and, using these expectations, con-
textualize the progress of describing the genetic architectures
underlying traits important to conservation and industry in
undomesticated tree species. We first highlight the extensive
evidence for local adaptation in trees by reviewing transplant
designs often used in investigations of quantitative genetic
differentiation. Using an extensive literature survey across
both gymnosperm and angiosperm species, we provide an
overview of these transplant methods, give examples of each,
and quantify the distribution of narrow sense heritability and
QST estimates across various trait categories. We further use
this survey to establish patterns of comparative quantitative
and neutral genetic differentiation (i.e., QST-FST tests) which
until this review had not been suitably synthesized in trees.
Before we transition into discussing commonmethods used to
uncover loci underlying adaptation; we establish expectations
for the genetic architecture of polygenic, fitness-related traits
by reviewing the theory available to date. We then provide an
extensive review of genotype-phenotype associations in trees
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and provide the distribution of the percent phenotypic vari-
ance explained by empirically associated loci. Using this dis-
tribution, we underscore the limitations of using solely single-
locus approaches to uncover the loci underlying local adapta-
tion in tree species. Given this synthesis, we highlight exem-
plary genomic resources available to fill knowledge gaps,
identify promising avenues of future research, identify key
benchmarks, and necessary steps towards truly integrating
studies of trees into the genomic era, and address our primary
question, BAre we out of the woods yet?^

Identifying heritable phenotypic variation

Trees have evolved numerous adaptations as a result of their
vast ecological breadth. As such, it has long been the goal of
forest scientists to understand the traits important to viability
and persistence. Among the most frequent designs used, com-
mon gardens and reciprocal transplants have aimed at describ-
ing genetically based differentiation of measured phenotypes
among various source populations of varying sizes and across
various geographic scales. Across these designs, investigators
seek to better understand the phenotypes relevant to local ad-
aptation and the selective pressures influencing these pheno-
types. The exact design chosen, however, is generally based
on the questions driving the research endeavor and often by
the availability of resources (Morgenstern 1996; Blanquart
et al. 2013; de Villemereuil et al. 2015). In this section, we
briefly review these designs, identify relevant questions and
inferences, highlight some of the important practical applica-
tions of these techniques, and discuss examples of past inves-
tigations in various tree species.

There is a rich history of forest scientists using the common
garden approach dating back hundreds of years (Langlet
1971; Mátyás 1996). In a broad sense, a common garden
design is used to test for differentiation among genetically
distinct groups in a homogeneous environment. These groups
can be clonal replicates or sibships (families) derived from
species or hybrids sampled from various populations, prove-
nances, varieties, cultivars, or agricultural accessions
(Cheplick 2015). When individuals from various origins are
grown together under the same conditions, the observed phe-
notypic differentiation is expected to reflect underlying genet-
ic variation, especially when maternal effects are assumed or
shown to be absent. Common garden and provenance trial
designs can also establish evidence that the phenotypes under
study are heritable, a prerequisite for an adaptive response to
selective agents (Supplemental Box S1), and that populations
exhibit quantitative genetic differentiation (i.e., QST; Spitze
1993). When driven by questions related to differentiation
alone, a single common garden approach can be used to de-
scribe levels of quantitative genetic variation within and
among genetically distinct groups. In these cases, no

environmental variables are manipulated, and thus, unequiv-
ocal evidence for trait divergence among groups, and the con-
tributing factors influencing this divergence (e.g., neutral or
selective processes), is often limited because conclusions must
be based on post hoc inferences about source environments
for the materials established in the common garden. Even so,
single common garden approaches can be a powerful tool to
demonstrate evidence congruent with local adaptation. For
instance, the white carob tree (Prosopis alba Griseb.,
Leguminosae) growing in Argentina is an ideal multipurpose
tree that has potential for use in reforestation and afforestation
applications in the region. However, this genus is known to
invade other regions, encroach on farmland and waterways,
and has a thorny growth habit that can cause sepsis in
livestock. To better understand how forestry applications can
balance the benefits of production and forest protection,
Bessega et al. (2015) used a single common garden
representing eight provenances of P. alba to compare esti-
mates of neutral genetic patterns to the quantitative genetic
variation of life history traits related to economic importance.
They found that for most traits there existed considerable un-

derlying genetic variation (QST = 0.139). Additionally, source
environments were often correlated with measured trait vari-
ation in the common garden, suggesting that the observed
differentiation was driven by temperature, precipitation, wind
speed, and sunshine fraction, with signals of divergent selec-
tion corroborated across QST-FST comparisons and tests for
selection (e.g., S test, sensu Ovaskainen et al. 2011).
Bessega et al. (2015) concluded that the signal of non-
neutral differentiation was indicative of divergent phenotypic
optima across populations, and that this variation could be
used to direct future breeding programs across the region.

When there is evidence that environmental differences
among source populations may be driving adaptive diver-
gence, strong environmental candidates can be manipulated
(artificially or via site selection) in a multiple common garden
design to further investigate hypotheses of differentiation and
adaptation. For instance, the sweet chestnut (Castanea sativa
Mill., Fagaceae), also known for its edible fruit, is distributed
across much of Minor Asia and southern Europe and is an
ecologically important component of many Mediterranean
systems. Castanea sativa exhibits ecological, physiological,
morphological, and genetic variability as the range overlays a
climatic transition from xeric Mediterranean conditions to
wetter Euro-Siberian environments (see refs in Lauteri et al.
2004). Previous common garden experiments carried out by
Lauteri and colleagues have indicated that populations across
this transition are further differentiated by water use efficiency
(the ratio of plant carbon gain to water loss) and carbon iso-
tope discrimination, Δ. To further explore variability of
drought-related traits, Lauteri et al. (2004) used an ex situ
multiple common garden design using two water and temper-
ature treatments in individual climatic chambers to assess
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differentiation among six populations across Spain, Italy, and
Greece. They found treatment and population × treatment
effects were significant, suggesting variation in drought adap-
tation across populations. Additionally, populations originat-
ing from dry sites generally exhibited higher values of Δ,
which was also composed of significant additive genetic var-
iation (h2 = 0.15–0.52), and suggests that genetic and physio-
logical mechanisms of drought adaptation confer a capacity to
colonize a wide arrange of environmental conditions, while
strong negative relationships between Δ and growth-related
traits is suggestive of strong evolutionary constraints at juve-
nile stages.

While ex situ common gardens approaches (e.g., Lauteri
et al. 2004) can provide strong evidence of adaptive diver-
gence among populations, and in some cases corroborate pu-
tative drivers of observed differentiation, these studies can
often exclude key environmental factors, possibly leading to
confounding signals of adaptation (Kawecki and Ebert 2004).
When in situ experimentation is feasible, site selection can be
used to test for environmental drivers of local adaptation. For
example, Evans et al. (2016) investigated traits related to
growth and phenology in juvenile narrowleaf cottonwood
(Populus angustifolia James, Salicaceae) by planting families
from nine populations across the native range into three com-
mon gardens, one each at the northern, southern, and interior
extent of the range. Using QST-FST comparisons and clinal
analyses alongside the quantitative genetic analyses, Evans
et al. (2016) concluded that climate cues played a major role
in structuring adaptive variation across the range of
P. angustifolia, and that future industrial and conservation
applications should utilize this information to inform source
environments for optimal outcomes.

As both in situ and ex situ common garden trials can in-
clude multiple environmental influences in their design, recip-
rocally transplanting to all source environments is not neces-
sarily a requirement to decompose genetic variation underly-
ing adaptive traits or to provide evidence for, or the drivers of,
differentiation among populations. Thus, these designs may
preclude inferences regarding local adaptation sensu stricto.
To produce such evidence, source populations can be planted
in a (full- or incomplete-factorial) reciprocal transplant design
and allow for traits related to fitness to be assessed across
native and non-native environments. If a population is locally
adapted, individuals exposed to their native environments
should show increased growth, survival, and reproduction rel-
ative to non-native genotypes (Kawecki and Ebert 2004;
Leimu and Fischer 2008; Hereford 2009; Savolainen et al.
2013). For example, with the goal of delineating conservation
units based on molecular and quantitative trait differentiation,
Rodíguez-Quilón et al. (2016) used four reciprocally
transplanted common gardens to assess height and survival
of samples from 35 natural populations of maritime pine
(Pinus pinaster Aiton, Pinaceae). For both traits, QST was

consistently larger than FST across the four sites, a pattern
suggestive of divergent selection. Six distinct gene pools
based on evolutionary history of neutral markers were identi-
fied, and because high quantitative differentiation (QST) was
found within these pools, hierarchical analyses were used to
further identify ten adaptive population groups for use in con-
servation and breeding approaches.

Available evidence suggests that many populations of tree
species have substantial heritable genetic variation, and that
the quantitative traits under study often show signals of diver-
gent selection across both broad and fine spatial scales. But
how broadly can we apply this statement? Are there overall
patterns of heritability and quantitative genetic structure
across tree species? Because estimates of heritability and
QST are often only applicable to a specific set of populations,
for a specific set of environments, at any specific point in time
(e.g., see Fig. 2d), a large sample of these estimates is there-
fore necessary to synthesize the current literature with regard
to patterns across taxa. To accomplish this aim, we synthe-
sized estimates from 129 published studies with estimates of
narrow sense heritability (n = 114) from replicated progeny
trials and/or estimates of quantitative genetic differentiation
(QST; n = 37). However, we excluded papers that have been
cited for estimates of QST or heritability that were calculated
post hoc from variance components (i.e., we only recorded
estimates that were explicitly reported as h2 or QST in the
original publication). For comparison, we further grouped
measured traits into 14 broad categories: cold hardiness, dis-
ease resistance, drought hardiness, form, growth, herbivore
and insect resistance, leaf and needle properties, phenology,
plant secondary metabolites, reproduction, resource alloca-
tion, seed and early germination properties, survival, and
wood properties. Because sample size can influence the pre-
cision of both heritability and QST, for each trait category, we
used a weighted average where weights were equal to the
number of families used to estimate variance components for
each estimate of h2 and QST.

In agreement with Cornelius (1994), our survey found that
many of the traits important to conservation and industry ex-

hibit non-zero narrow sense heritability (h2 = 0.367; File S1;
Figs. S1–S4) and are thus amenable to selection. The mean
weighted QST across traits groups from our survey (Table S1;
File S1) was between 0.10–0.28, except for drought hardiness
(0.06) and disease resistance (0.04), with median values from
the unweighted distribution generally falling below the
weighted average for each trait group (Fig. 1). This suggests
that over various geographic and environmental distances,
population histories, and species, there is a general pattern of
substantial genetic variation underlying measured traits.
Given our synthesis ofQSTestimates in trees, we were curious
of the evidence for adaptive divergence among populations
(QST > FST). Of the 37 articles reporting QST estimates in
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our review, 23 compared QSTwith FST or GST estimated from
the same populations under study (however, we excluded
studies that used FST measurements taken from the
literature, e.g., as in McKay and Latta 2002; Alberto et al.
2013). Indeed, as pointed out by Crnokrak and Merilä
(2002), comparisons of QST and FST estimated from different
populations and/or at different time points are uninformative.
Of these 23 studies, 18 compared QST and FST in a statistical
framework while the remaining five studies compared QST

and FST numerically. Across numerical and statistical compar-
isons combined, 67% (254 of 381 traits) exhibited higherQST

than FST, with 69% (170 of 246 traits) exhibiting significantly
higher QST than FST. Although we did not tally instances
where QST was reported to be less than FST (statistically or
otherwise), as this was not the focus of our review, there were
some instances in which this was the case. For instance, Lamy
et al. (2011) found such patterns when quantifying population
genetic differentiation of cavitation resistance across the spe-
cies range of maritime pine (Pinus pinaster Aiton, Pinaceae),
while Mahalovich and Hipkins (2011) also found that QST <
FST for traits related to white pine-blister rust resistance in
inoculated seedlings of whitebark pine (Pinus albicaulis
Engelm., Pinaceae). While various explanations for such pat-
terns were outlined by Lamy et al. (2011), canalization was
argued as the most likely process driving the observed pat-
terns, while Mahalovich and Hipkins (2011) offered similar
arguments for selection favoring the same genotype in differ-
ent environments (see Lamy et al. 2012 for more regarding
this aspect).

Despite neutral genetic differentiation partitioned primarily
within populations, adaptive genetic variation seems to be
structured to a greater degree across populations, more often

than not, for the various fitness-related traits reviewed here.
Such a pattern is indeed consistent with local adaptation, as-
suming that (among other considerations such as the recency
of selection) mutation rates are considerably lower than mi-
gration rates in these populations (Whitlock 1999; Hendry
2002; Leinonen et al. 2013). In any case, given an extensive
literature supporting the local adaptation hypothesis in trees,
our results appear consistent with patterns of selective forces
acting on abundant, heritable genetic variation across popula-
tions, even in the face of gene flow (discussed further in the
next section).

Expectations for the loci underlying
quantitative traits

The homogenous environments of the common garden and
reciprocal transplant designs are ideally suited to test hy-
potheses of local adaptation in trees (Sork et al. 2013).
However, uncovering the genetic basis and contributory
influence of specific loci underlying these adaptive traits
is a sizable endeavor on its own, and the success of such
pursuits will be determined, in part, by the trait’s under-
lying genetic architecture (i.e., the number, effect size,
type, location, expression, pleiotropic effect, environmental
influence, and interaction of underlying loci), which is
generally not known a priori (Stinchcombe and Hoekstra
2008; Rellstab et al. 2015; Savolainen et al. 2013; Hoban
et al. 2016; Burghardt et al. 2017; Wadgymar et al. 2017).
Much of our early understanding of the architectures of
complex traits came shortly after Nilsson-Ehle (1909) and
East (1910) independently demonstrated evidence for
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multiple-factor inheritance, where Fisher (1918) laid the
groundwork for quantitative genetics by incorporating the
additive properties of variance to partition phenotypic var-
iation into components tractable to a model of Mendelian
inheritance. It was this work, and that of Fisher’s geomet-
ric model (Fisher 1930), which founded the basis for at-
tributing continuous variation of phenotypes to a polygenic
model of many underlying heritable components of mainly
small effect. From this model, Fisher (1930) concluded
that mutations of small effect were the main drivers of
adaptation, suggesting large-effect substitutions to contrib-
ute little to adaptation due to negative pleiotropic effects
constraining effect size. Therefore, the fate of a given
locus would be conditioned on its average, marginal effect
on fitness calculated across the species, with non-additive
deviations from this linear model of inconsequential influ-
ence. This micro-mutationist view, to a large extent,
remained the dominant thought for nearly half a century
(Orr 2005). It was then that Kimura (1983) established
that for an allele to contribute to adaptation, it would need
to survive the stochastic nature of drift. Thus, new muta-
tions of low frequency and effect were less likely to
contribute substantially to adaptive evolution. Considering
the adaptive contribution probability of large and small
effect loci, Kimura concluded that mutations of moderate
effect would be the most plausible. Years later, Orr (1998)
showed that over the entire bout of selection via an adap-
tive walk, the distribution of fixed substitutions resembles
an exponential distribution, with effect size decreasing
with the proximity to the phenotypic optimum. In addi-
tion, the distribution of fitness effects of beneficial muta-
tions is also expected to be exponential (Orr 2003; for
more discussion on this aspect, see also Orr 2006; Eyre-
Walker and Keightley 2007; Martin and Lenormand 2008;
Kopp and Hermisson 2009b; Keightley and Eyre-Walker
2010; Dittmar et al. 2016). Despite major advances in
theory and technology, there still remains substantial un-
certainty regarding the exact number of loci underlying
many adaptive traits, the effect size distribution of these
loci, and how the number of underlying loci and effect
distribution may change under various evolutionary re-
gimes (Orr 2001; Slate 2005; Hansen 2006; Mackay
et al. 2009). In this section, we describe how various
factors can contribute to the (perhaps, effective) number
of causative loci, and the distribution of effects underlying
continuously distributed adaptive traits, beginning first
with aspects of the architecture itself (gene action), and
concluding with explanations of how various processes
(e.g., selection) play an influential role in the evolution
of underlying genetic architectures. Establishing these ex-
pectations is essential for assessing common approaches
and guiding future directions. In the next section, we then
compare these expectations with methods used in, and

results from, genotype-phenotype associations in trees.
While we discuss these examples in isolation, we highlight
the fact that the underlying biological processes are often
not independent.

Gene action

The classical genotype-phenotype map is largely one of
additive effects and is represented by a statistical
regression of the phenotype on genetic content, as
developed by Fisher (1918) and extended by others
(e.g., Cockerham 1954; Kempthorne 1954). Indeed,
much of the work done in trees has relied on such
additive effects to describe heritable and quantitative
genetic variation (see previous section). In this model,
the phenotypic variance is partitioned into orthogonal
(i.e., independent) contributions from the genetic vari-
ance (σG), environmental variance (σE), and the vari-
ance due to interaction between genotype and environ-
ment (σGxE; Fig. 2; see Supplemental Box S1). Further,
σG is also the sum of orthogonal variance components,
each term representing a different form of gene action.
The additive, dominance, and epistatic terms respectful-
ly designate the associated variance contribution of in-
dependent alleles, the non-additive contribution to vari-
ance of interactions among alleles at the same locus,
and the contribution to variance of non-additive interac-
tions among alleles at different loci (the latter of which
can take one of many forms such as additive-by-addi-
tive, additive-by-dominance, etc.; Lynch and Walsh
1998). As a result, non-additive gene action is mini-
mized as non-linear contributions to the overall pheno-
type (Moreno 1994; Whitlock et al. 1995) which con-
tributes little to the distinction of the different forms of
dominance and epistasis (Cheverud and Routman 1995;
Hansen and Wagner 2001; Hermisson et al. 2003;
Hansen 2006; Mackay 2014) nor towards the inference
of aspects of the underlying genetic architecture in gen-
eral (Nelson et al. 2013; Huang and Mackay 2016).

These statistical conveniences afforded by Fisher and
others led to the notion that such non-additive effects were
transient (i.e., are due to LD, which will decay with the relax-
ation of selection), or that trends of statistical epistasis were
representative of functional epistasis in general, and therefore
epistasis was unimportant to evolutionary dynamics (e.g.,
Bulmer 1980; Crow 2008, 2010; Hill et al. 2008). While min-
imized in a statistical regression, this does not necessarily
mean that epistasis and dominance will not have a profound
impact on the genetic architecture, or towards a given popu-
lation or species’ long-term evolutionary trajectory, even if
statistical epistatic or dominance variance is minimal
(Goodnight 1988; Cheverud and Routman 1995; Hansen
and Wagner 2001; Hansen 2013; Nelson et al. 2013;
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Griswold 2015; Paixão and Barton 2016). Indeed, parameter-
izing a model in which the type I sums of squares is deter-
mined by non-additive parameters, as opposed to additive
variance in the conventional regression model, the majority

of genetic variation is still captured by the primary effect in the
model regardless of the underlying architecture (Huang and
Mackay 2016). Given the prevalence of evidence for non-
additive contributions (e.g., Phillips 2008; de Visser et al.
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Fig. 2 Relevant quantitative genetic concepts are needed to understand
the evolution of polygenic traits. a Additive and non-additive effects at a
single locus, where a is defined as the additive effect (also known as the
average effect of allelic substitution [α] when there is no dominance) and
d is defined as the dominance deviation. With dominance, α = a[1 + k(p
− q)], where k is the degree of dominance (k = 0: additive, k = 1: domi-
nance, k > 1: over-dominance, see Lynch and Walsh 1998). b Polygenic
traits are determined by multiple genes, each with additive (shown) and
non-additive (not shown) effects. The total additive effect is the sum of
the additive effects at all causative loci. c Additive-by-additive epistasis,
where the additive effect of an allele at the PHY_A SNP depends on what
allele it is paired with at the RPL13 SNP. In this case, the effects can be

thought of as dependent in the following manner using the four possible
haplotypes at the PHY_A (A/T SNP) and RPL13 (C/T SNP) SNPs—AC,
+ 5; AT, − 2; TC, − 1; TT, 4. d The effect of genetic drift on the additive
genetic variance as determined by 100 independent, causative loci. Each
line represents a simulation of genetic drift in a constant sized population
(n = 500 diploids) conditioned on initial allele frequencies across loci (p1)
and effect sizes (α). The expected mean across all 100 simulations is
given by the dashed black line. Any given simulation can deviate strongly
from this expectation (solid black line). Thus, when the elements of p
change over time, in this case due to genetic drift, so does the additive
genetic variance. See also Supplemental Box S1
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2011; see also references in Hansen 2013), it is likely that non-
additive effects will play a role in evolutionary outcomes. For
instance, Huber et al. (2017) showed that the degree of dom-
inance in Arabidopsis is an outcome based upon functional
importance and optimal expression level. Further, Carter et al.
(2005) show that, relative to a purely additive trait (or with
non-directional epistasis) under directional selection, positive
and negative epistasis can respectfully increase or decrease the
additive genetic variance, and thus increase or decrease the
rate of phenotypic response to selection (see also Le Rouzic
and Álvarez-Castro 2016). As Jones et al. (2014) show, for a
two-trait phenotype controlled by pleiotropic and epistatic ef-
fects, epistasis in the presence of selection can also affect the
mutational architecture of complex traits, where the average
allelic effect evolves to be negatively correlated with the av-
erage epistatic coefficient, the strength of which is greater in
larger population sizes. Yet, as described by Barton et al.
(2016), and further discussed by Barton (2017) and Paixão
and Barton (2016), the infinitesimal model can be generalized
to include epistatic effects, particularly when the number of
underlying loci is large and selection on individual loci is
weak. In the case of non-systematic, weak pairwise epistasis,
andwithout mutation or environmental noise, the infinitesimal
model holds to a good approximation (Barton et al. 2016). In
the case of sparse epistasis with selection and a large number
of loci, the change in the trait mean over 100 generations is
greater than that under a purely additive architecture, and the
decrease in additive genetic variance exceeds, to an extent,
that of the neutral case after about 30 generations (which is
exacerbated with simpler architectures), with a reduction of
the frequency of segregating alleles with positive effect on the
trait (Barton et al. 2016; Barton 2017).

Despite an ongoing debate within the literature
(Wright 1932; Whitlock et al. 1995; Crow 2008, 2010;
Gibson 2012; Zuk et al. 2012; Hansen 2013; Hemani
et al. 2013; Nelson et al. 2013; Mäki-Tanila and Hill
2014; Ávila et al. 2014; Paixão and Barton 2016), and
given that there seems to be no general prevalence of
either positive or negative epistatic interactions (Mackay
2014), the infinitesimal model is likely to continue to
contribute to our understanding of the evolution of com-
plex traits, as exemplified in its application towards
breeding applications (Turelli and Barton 1994) and spe-
cifically those successfully applied to trees (Savolainen
et al. 2007; Thavamanikumar et al. 2013; Isik et al.
2015; Grattapaglia 2017). Ultimately, the success of
such models will be conditioned on the context, as well
as the distinction between physiological and statistical
gene action. Here, (higher order) non-additive contribu-
tions to phenotypic variance will likely have minimal
deviations from the limit of the infinitesimal model in
the short-term, particularly if this is primarily due to
independent, low-order interactions, and should thus be

applied with this in mind. As such, while short-term
evolutionary processes are likely to hold in this limit,
identifying the non-additive loci which underlie the trait,
and their respective gene action, may still need further
inquiry (Grattapaglia 2017). Indeed, it is often argued
that non-additive gene action is too often neglected in
studies of complex traits (e.g., Carlborg and Haley
2004), possibly due to the large sample sizes required
to detect significant interactions, and lack of statistical
power incurred due to multiple hypothesis testing
(Mackay 2014). Given the recent reduced cost of se-
quencing technology and availability of novel computa-
tional and laboratory tools, future studies incorporating
investigations of epistasis and dominance (where appro-
priate and feasible) would contribute to our understand-
ing of genetic architectures, quantitative trait evolution,
and breeding applications in trees (Vitezica et al. 2017).
For example, breeding applications assessing hybridiza-
tion across divergent backgrounds, as is also prevalent
across species in nature, have shown the importance of
non-additive effects in phenotypic outcomes (as in
Eucalyptus, e.g., Tan et al. 2017, and Pinus, e.g.,
Dungey 2001). Even so, the additive model is still a
powerful tool to describe the loci underlying adaptive
traits.

Pleiotropy is another considerable factor influencing the
expectations of the genetic architecture of quantitative traits,
its evolution or evolvability, and indeed the genotype-
phenotype map (Hansen 2003; Orr 2006; Chevin et al.
2010b; Tenaillon 2014). While multiple definitions exist
across the literature (see Paaby and Rockman 2013), pleiotro-
py is generally identified as a single locus influencing multiple
phenotypic traits. Other than linkage disequilibrium, pleiotro-
py is the fundamental cause of genetic covariance among phe-
notypes (Lande 1980). Given that the number of independent
traits under selection is likely limited (Barton 1990), pleiotro-
py likely plays a substantial role in evolutionary dynamics. It
is expected that as the number of traits, n, influenced by a
locus increases, the probability of a beneficial mutation will
decrease with the effect size of a mutation, where the effect
size, r, relative to the distance to the phenotypic optimum,
d n−1/2, must be (much) less than d in order to be beneficial
(Fisher 1930; the so-called cost of complexity: Orr 2000). Yet,
empirical data seem to contradict this hypothetical cost, as the
effect size of mutations often do not scale with pleiotropy in
this way, and instead increase with the dimensionality of
targeted traits (Wagner et al. 2008; Wang et al. 2010).
Additionally, universal pleiotropy, where all mutations affect
all phenotypes, and where there is no net directionality of
mutations (i.e., mutational isotropy; both aspects as in Fisher
1930), has also been challenged by findings which suggest
that only a fraction of phenotypic traits are affected by pleio-
tropic loci (Wagner et al. 2008; Wang et al. 2010). Relaxation
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of such assumptions from Fisher’s geometric model have
shown that the total number of traits affected by pleiotropy
has a relatively decreased effect on the rate of evolution in
more general models (e.g., Martin and Lenormand 2006; see
also Simons et al. 2017, and references in Wagner and Zhang
2011, Tenaillon 2014). It seems that if model organisms (e.g.,
Pickrell et al. 2016; Smith 2016) are taken as a bellwether for
expectations in trees, pleiotropy is likely a contributing factor
for many quantitative traits. Thus, the fraction of beneficial
mutations is likely limited when the number of traits influ-
enced is large, suggesting that the cost of complexity (or, more
precisely, pleiotropy) may be generally robust (Welch and
Waxman 2003), particularly when a population is close to its
phenotypic optimum where selection acts against dimension-
ality of pleiotropic effects (Zhang 2012). Thus, the degrees of
pleiotropy across underlying loci, distance from phenotypic
optima, and covariance among traits under selection can have
profound effects on evolutionary outcomes (e.g., as in Pinus
contorta, Lotterhos et al. 2017). This is particularly true for the
evolvability of architectures and distribution of effect sizes,
which further depends on the variational autonomy of the
traits affected by pleiotropy and the modularity of mutations,
the former of which is ultimately determined by the direction
and size of effect among a set of pleiotropic loci across a set of
characters (see Arnold 1992; Wagner and Altenberg 1996;
Hansen 2003, 2006; Wagner et al. 2007; Chevin et al.
2010b; Wagner and Zhang 2011; MacPherson et al. 2015).

In many investigations of local adaptation, the primary in-
terest is in trait evolution and thus the underlying genetic
components. As such, environmental effects and interactions
are not often pursued, or perhaps even detected (Yoder and
Tiffin 2017), particularly in studies of a single common gar-
den or environment, and are instead treated in much the same
way as epistatic interactions discussed above. Nonetheless,
genotypic effects can evolve through genotype-by-
environment interactions with a changing environment just
as is the case for the evolution of non-additive interactions
with a changing genetic background (Hansen 2006). Indeed,
it is likely that consistent fluctuations in the environment
would select for environmentally perceptive responses, which
seems to be the case across many tree species (Li et al. 2017).
The contribution to the effect size distribution from GxE in-
teractions will be a function of the variation in selection across
the environments experienced by the interacting allele(s) as
well as the level of gene flow between environments and
fitness differences among various genetic backgrounds, but
to our knowledge such information (to the extent of that for
e.g., selective sweeps) is lacking within the literature.

Negative selection

Negative selection acts against deleterious mutations that arise
within populations. It is one, but not the only, mechanism that

underlies stabilizing selection, defined at the level of the phe-
notype where deviations from an optimal value are selected
against. Optima in this framework can be thought of either
globally (i.e., across all individuals) or locally (i.e., individuals
within a population), where the latter can have varying optima
across populations. The nature of the optima (i.e., being local
or global) affects the detectable trait architecture. For example,
trait architecture should be composed of rare alleles with a
negative relationship between effect size and allele frequency
(cf. Eyre-Walker 2010 and references therein), where this re-
lationship can also be confounded with degree of dominance
and gene expression network connectivity (Huber et al. 2017),
under models of a single global optimum. From a population
genetic perspective, the ubiquity of negative selection is en-
capsulated in the name background selection, which has ex-
tensive reviews about its presence in natural systems
(Charlesworth 2013), its importance for the neutral and nearly
neutral theories of molecular evolution (Ohta 1992, 1996),
and its contribution to observable patterns of hitchhiking
(Stephan 2010). Important for the study of polygenic adapta-
tion and its architecture, however, is that loci identified using
GWAS may also include segregating deleterious variation (as
argued and hinted at in Eckert et al. 2013a; cf. Yang et al.
2017; Gazal et al. 2017) as this creates trait variance, with
little known about their prevalence (including differential
prevalence across traits), differentiation in frequencies across
populations (but see Zhang et al. 2016), and effects on down-
stream inferences about divergent selection pressures across
populations. It is sets of GWAS loci, though, that are currently
analyzed for signatures of local adaptation via spatially diver-
gent (i.e., locally positive) natural selection (e.g., Berg and
Coop 2014).

Recent exemplary work with expression networks in
Populus tremula L. (Salicaceae; Mähler et al. 2017) and the
herbaceous Capsella grandiflora Boiss. (Brassicaceae;
Josephs et al. 2015, 2017b) have revealed intriguing insight
into the effects of negative selection on the architecture of
complex traits in plants, as well as the relationship between
network connectivity and the strength of negative selection. In
P. tremula, genes with expression levels that were significant-
ly associated with sequence variation were found more often
in the periphery of the coexpression network (lower network
connectivity) than within network module hubs (higher con-
nectivity), while expression-associated SNPs were negatively
correlated with network connectivity and effect size, a pattern
also found between connectivity and expression variance, and
minor allele frequency and QTL effect size (Mähler et al.
2017). Genes associated with sequence variation had less
skewed site-frequency spectra (i.e., the frequency distribution
of allelic variants) and lower estimates of nonsynonymous to
synonymous divergence (dN/dS) than genes not associated
with sequence variation, together suggesting that genes within
the periphery of co-expression networks are likely under less
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selective constraint than those genes with high network con-
nectivity which likely experience greater intensities of purify-
ing selection. These genes thus tend to have more segregating
variation and may be those most likely to be detected with
current sample sizes utilized in GWAS, which has implica-
tions for estimation of trait architecture and its Bdegree^ of
polygenicity. Even so, while there is prevalent evidence of
negative selection in trees (e.g., Krutovsky and Neale 2005;
Palmé et al. 2009; Eckert et al. 2013a, b; De La Torre et al.
2017), more inquiry is needed.

Positive selection

The temporal and spatial heterogeneity of selection can
impact the evolution of genetic architectures underlying
adaptation. These impacts are often thought of on a
spectrum of trade-offs, with one end being antagonistic
pleiotropy where allelic effects vary between positive
and negative on fitness across populations, and the other
being conditional neutrality where allelic effects on fit-
ness are positive in one or more populations and nearly
zero in others (Anderson et al. 2012; Savolainen et al.
2013). For instance, alleles incorporated into a popula-
tion after a shift in environmental influence can increase
from low to high frequency via positive selection. The
existence of such a beneficial allele can manifest in
several ways: from new mutations, introgression through
gene flow, or molecular reorganization through novel
recombination, inversion, transposition, copy number
variation, or insertion-deletion events. If there is strong
selection acting on this allele (Nes >> 1), it will sweep
to high frequency creating a signature of reduced poly-
morphism at neutral sites physically linked to the allele
(Bgenetic hitchhiking,^ Maynard Smith and Haigh 1974)
resulting in a hard Bselective sweep^ (Berry et al.
1991). However, in structured populations with limited
gene flow, this process can take significantly longer to
reach fixation, resulting in incomplete sweeps (Whitlock
2003). Additionally, Pavlidis et al. (2012) found that, in
congruence with Chevin and Hospital (2008), a
multilocus genotype often prevents the trajectories of
individual alleles from sweeping to fixation, with an
increasing number of loci leading to decreasing proba-
bility of fixation, and as a result, an altered selective
signature at such loci (see also Jain and Stephan
2017). As such, hard selective sweeps in a polygenic
architecture are expected to be rare (but not completely
absent) under most circumstances, particularly when the
shift in environment causes a relatively small deviation
from the phenotypic optimum. Thus, hard sweeps most
likely apply to loci with relatively large effect above a
calculated, context-dependent threshold value (Orr 2005;

de Vladar and Barton 2014; Stephan 2015; see
specifically Jain and Stephan 2015, 2017).

While early literature (Maynard Smith and Haigh 1974;
Kaplan et al. 1989) focused on the rapid sweep of an allele
incorporated into a population after an environmental shift,
research within the last few decades have focused on Bsoft
sweeps^ resulting from neutral or deleterious mutations that
are present in the standing genetic variation prior to the change
in the selective environment, wherein the selection coefficient
changes with the environmental shift such that the allele(s)
become evolutionarily advantageous (reviewed in
Hermisson and Pennings 2005; Barrett and Schluter 2008;
Messer and Petrov 2013; Hermisson and Pennings 2017; see
also Jensen 2014). These allele(s) could manifest via a single
low-frequency variant, multiple variants caused by parallel
recurrent mutation/reorganization on multiple haplotypes, or
multiple unique alleles that arise independently within, per-
haps multiple, populations. In such cases where selection acts
via soft sweeps, the rate of evolution at the phenotypic level is
expected to exceed those of hard sweeps because the alleles
under selection have escaped the stochastic nature of drift to a
greater degree and are segregating within multiple individuals
and genetic backgrounds within the population. The extent to
which soft sweeps alter the effect size distributions underlying
the genetic architecture is likely dependent upon both the
strength of selection and effect size before and after the envi-
ronmental change (Messer and Petrov 2013; Matuszewski
et al. 2015; Jain and Stephan 2017), while the frequency be-
fore selection influences the likelihood of subsequent detec-
tion (Innan and Kim 2004). Additionally, if multiple muta-
tions are segregating during the sweep, the probability of fix-
ation for any given locus also decreases (Pennings and
Hermisson 2006a, b; Chevin and Hospital 2008; Ralph and
Coop 2010). Evidence for hard sweeps in tree species exist
within the literature, although they are rare (e.g., disease
response genes in Pinus taeda Ersoz et al. 2010; see also
Table 2 in Siol et al. 2010). However, for many species of
trees, which often experience high gene flow and strong di-
versifying selection across populations, adaptive divergence
for polygenic traits is expected to result more often from soft
sweeps than hard sweeps, affecting phenotypes by subtle al-
lele frequency changes across populations, such that allele
frequency differences of individual loci across populations
for neutral and selective sites will often be nearly indistin-
guishable (Latta 1998, 2003; Barton 1999; Le Corre and
Kremer 2012; Stephan 2015; Yeaman 2015; Jain and
Stephan 2015, 2017). Indeed, the large effective population
sizes found in most tree species would permit large effective
mutation rates (or reorganization events) necessary for a soft
selective sweep from multiple unique variants, particularly
when the phenotype is underlain by a large mutational target.
Even so, and as highlighted by Stephan (2015) and Bailey and
Bataillon (2016), the extent to which scientists can detect the
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influence of demographic processes on soft versus hard
sweeps, and vice versa, remains challenging (Jensen et al.
2005; Chevin and Hospital 2008; Schrider et al. 2015, 2016;
Schrider and Kern 2016; Hermisson and Pennings 2017).

While discrete directional selection events are likely to be a
common evolutionary influence across taxa, fluctuating or
sustained directional selection (i.e., moving optima) are also
likely to be contributory factors influencing the genetic archi-
tecture of quantitative traits (reviewed in Kopp and
Matuszewski 2013; see also McCandlish and Stoltzfus
2014). For a sustained moving optimum, the effect size distri-
bution of beneficial alleles is expected to be dependent upon
the effect distribution of standing or de novomutations as well
as the strength of selection: if the rate of change is dramatic,
adaptation from new mutations is expected to occur through
intermediate to large-effect loci (Kopp and Hermisson 2009a;
Matuszewski et al. 2014) or from small-effect loci when ad-
aptation occurs via standing variation (particularly when
epistasis is considered, Matuszewski et al. 2015). Under lesser
rates of environmental change, adaptation is expected to pro-
ceed throughmainly alleles of small effect (Collins et al. 2007;
Kopp and Hermisson 2009a, b) where intermediate effects
will dominate the long-term distribution of effect sizes
(Kopp and Hermisson 2009b). In the case of fluctuating envi-
ronments, outcomes often depend directly on the degree of
temporal autocorrelation of the changing environment. In
such cases of stochastic fluctuation around a linear trend of
environmental change, extinction risk increases relative to that
of the strictly linear trend (Bürger and Lynch 1995) where
local adaptation lags, to some degree, behind any given con-
temporaneous scenario. In comparison, and similar in some
ways, stochastic fluctuations around a constant mean are ex-
pected to resemble the dramatic environmental change scenar-
io described above, characterized by strong selection pres-
sures, maladaptation between generations, and a large lag load
(Bürger 1999; Chevin 2012; Kopp andMatuszewski 2013). In
the case of autocorrelated shifts, the Bpredictability^ of such
fluctuations may decrease the possibility of extinction, in-
crease probability of local adaptation, and lead to similar sce-
narios as discussed for gradual changes in the environment
(Kopp and Matuszewski 2013).

Gene flow

Gene flow, to the extent that would be appreciable to
that found in trees (reviewed in Savolainen et al. 2007),
is also an important component shaping quantitative ex-
pectations. Indeed, since the early 1900s, we have
known that gene flow can disrupt adaptation if selection
is not strong enough to overcome the loss of beneficial
alleles (Haldane 1930; Wright 1931; Slatkin 1987;
reviewed in Felsenstein 1976; Lenormand 2002;
Savolainen et al. 2007, 2013; Feder et al. 2012b;

Tigano and Friesen 2016). Particularly when gene flow
is asymmetric between core and peripheral populations,
adaptation can be inhibited in marginal habitats
(Kirkpatrick and Barton 1997; Kawecki 2008). Even
so, there is abundant evidence that gene flow can pro-
mote adaptation and maintain polymorphisms within
populations, including white sand lizards (Laurent
et al. 2016), stick insects (Comeault et al. 2014,
2015), cichlid fishes (Meier et al. 2017), Darwin’s
finches (Lamichhaney et al. 2015), and lodgepole pine
(Yeaman and Jarvis 2006).

The magnitude of gene flow between populations can also
impact the distribution of effect sizes, for when gene flow falls
below a critical threshold, and over many thousands of gen-
erations, there is an increase in the probability of establish-
ment and persistence times of large-effect alleles, thus reduc-
ing the proportion of the polymorphism due to small-effect
loci (Yeaman and Otto 2011; Yeaman and Whitlock 2011).
These dynamics are further influenced by the susceptibility
of alleles to Bswamping^ (Slatkin 1975; Bürger and
Akerman 2011; Lenormand 2002; Yeaman 2015; sensu
Haldane 1930). For alleles that are prone to swamping, adap-
tive phenotypic divergence depends on genetic variation and
is driven by allelic covariance among populations particularly
when the underlying architecture is highly polygenic, the mu-
tation rate is high, and the number of loci underlying the trait
exceeds the number needed to achieve the local optimum phe-
notype (genetic redundancy; Yeaman 2015). Conversely,
when there is little genetic redundancy underlying the trait,
limited divergence is observed unless the effect size of a given
swamping-prone allele exceeds the critical migration thresh-
old. In these cases where swamping-prone alleles contribute to
adaptive divergence, the genetic architecture is transient and
any given locus contributes ephemerally to phenotypic diver-
gence, even for loci of relatively large effect (Yeaman 2015).
In the case of swamping-resistant alleles, the evolved archi-
tecture is enriched for large-effect loci and adaptive diver-
gence can be maintained with little genetic variation or input
from mutation. Yet, while the contribution from such loci can
last many thousands of generations, the architecture can again
become transient as the genetic redundancy or mutation rate
increases (Yeaman and Whitlock 2011; Yeaman 2015).

Physical linkage and reduction of recombination be-
tween adaptive loci can also play a considerable role in
adaptive processes in the face of gene flow (Feder and
Nosil 2010; Feder et al. 2012a, b; Yeaman 2013;
references therein). In such cases, loci that are tightly
linked to other loci already under selection will have an
increased probability of contributing to local adaptation,
both because of physical linkage as well as by reducing
the effective recombination among loci within the se-
quence block. For instance, Yeaman and Whitlock
(2011) showed that under divergent selection with gene
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flow, the number of contributing loci decreases with
increasing recombination while small effect loci tend
to cluster in groups that act as a single large effect
locus (see also Remington 2015), and strong selection
can maintain these clusters of linked loci over greater
map distances than can weak selection. More recently,
Yeaman (2013) employed individual-based simulations
to provide evidence that the clustering of alleles
throughout a bout of adaptation is unlikely to be driven
mainly by divergence hitchhiking alone, and that instead
competition between genetic architectures and chromo-
somal rearrangements occurring throughout adaptive
processes under a range of environmental fluctuation
scenarios can lead to the evolution of tightly clustered
adaptive loci which persist in the event of gene flow,
unlike the clusters identified by Yeaman and Whitlock
(2011). Yeaman (2013) found that the level of clustering
was a function of the temporal fluctuation period, the
rate of rearrangement itself is an important determinant
on the evolution of clustered architectures, and clusters
can in some cases be evolutionarily disadvantageous.
Together, these results suggest that genomic rearrange-
ments (reviewed in Ortiz-Barrientos et al. 2016), includ-
ing inversions (Kirkpatrick and Barton 2006; reviewed
in Hoffmann and Rieseberg 2008), which decrease the
effective rates of gene flow among adaptive sequences
can be an essential component of local adaptation, and
indeed some cases of speciation, in the face of gene
flow.

Summary

While we provided an overview of the factors that can
influence the genetic architecture of local adaptation, we
acknowledge that it is far from exhaustive. Because the
phenotypes used in studies of local adaptation (particu-
larly those assumed or corroborated to be a component
of total lifetime fitness) often have a continuous distri-
bution, and are thus quantitative in nature, the underly-
ing genetic basis for these traits is likely polygenic and
is predicted to be underlain by multiple (often many)
segregating loci, many of which may confer small phe-
notypic effects (and are thus unlikely to be detected
using single-locus approaches). Even so, a continuum
exists, where the true genetic architecture (the number
of contributing loci, as well as their relative locations
within the genome, phenotypic effects, and interactions)
underlying a given complex trait is itself determined by
a combination of evolutionary forces that encompass an
interplay between the strength, timing, and direction of
(background) selection against the homogenizing effects
of gene flow and recombination, disruptive effects of
drift, linkage, transposition, inversion, and mutation,

interactions between underlying loci as well as between
these loci and the environment, structural variation, re-
lationship to gene expression networks, as well as other
factors related to life history. Consequently, the contem-
porary genetic architecture is a result of past evolution-
ary processes, while the adaptive response to future
evolutionary dynamics is influenced in part by the con-
temporary architecture and genetic variance at hand.

The genomics of local adaptation in trees

Common approaches used to identify adaptive loci

Across taxa, and specifically in trees, the predominant associ-
ation and outlier methods for uncovering sets of loci underly-
ing local adaptation have relied upon single-locus population
genetic approaches. Putatively adaptive loci are often identi-
fied by elevated allele frequency differences among popula-
tions relative to patterns genome-wide. Yet, as revealed in the
previous section, loci underlying polygenic traits will often be
indistinguishable from non-causative sites in this way.
Further, outlier tests based on FST (sensu Lewontin and
Krakauer 1973) do not incorporate information regarding pu-
tative phenotypic targets of selection nor environmental
drivers of differentiation, often do not correct for neutral pop-
ulation structure (but see Whitlock and Lotterhos 2015), and
will inevitably isolate a biased set of candidate loci
(Hermisson 2009; Cruickshank and Hahn 2014). In the case
of single-locus genotype-environment associations (reviewed
in Rellstab et al. 2015; see also De Mita et al. 2013), informa-
tion about possible environmental drivers is incorporated by
assessing the association between allele frequencies and envi-
ronmental heterogeneity, yet without information regarding
traits hypothesized to be influenced by selection (Schoville
et al. 2012). Single-locus genome wide association studies
(see next section; Supplemental Box S2) and quantitative trait
loci (QTL) experiments (reviewed in Ritland et al. 2011; Hall
et al. 2016) have also been used in trees, quantifying the dif-
ferential effects of typed alleles on a given phenotype. Despite
the shortcomings of these methods, such studies provide can-
didate loci that can be investigated in further detail (Tiffin and
Ross-Ibarra 2014), which is particularly advantageous when
resources are limited. Indeed, as discussed below, these ap-
proaches dominate the methods used to uncover complex
traits (adaptive or otherwise) in trees.

Current progress in trees

In light of the expectations outlined above for the architecture
of quantitative traits under various evolutionary regimes, and
the methods commonly used to detect these loci, we reviewed
the literature of single-locus genotype-phenotype associations
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(GPAs, which included associations to gene expression levels)
from studies in forest trees. In doing so, we identified 52
articles across 10 genera and 24 species with a total of 2113
GPAs (Supplemental Table S2, Supplemental File F2).
Because most studies in trees do not report phenotypic effect
sizes of individual loci (e.g., regression coefficients), we re-
port r2 values which can be used to quantify the percent phe-
notypic variance explained by the associated locus. In cases
where multiple SNPs from a given locus (e.g., a gene or scaf-
fold) were associated to a trait, we averaged the r2 values for
that locus. As with our review of trait heritability and QST, we
grouped phenotypic traits used in associations into 12 broad
categories (in this case, no phenotypes fell into Survival or
Seed and Seedling Properties groups). If traits important to
tree conservation and industry are often of a polygenic basis,
we would expect small to moderate effects from loci empiri-
cally associated to phenotype. Indeed, across the trait groups
considered here, the mean r2 was 0.039, where 80.79% (n =
1707) of recorded estimates had r2 values less than 0.05,
18.78% (n = 397) of r2 values falling between [0.05,0.22],
and nine values of r2 greater than 0.22, which were all related
to Cronartium ribicola resistance in Pinus monticola Douglas
ex. D. Don (Fig. 3a).

Of the 12 trait groups, all but those traits relating to both
reproduction and herbivore and insect resistance had r2 esti-
mates greater than 0.10, with traits relating to disease resis-
tance, growth, leaf and needle properties, phenology, and
wood properties each contributing over 10% of these outliers
(Fig. 3b). These small effects tend to also not account for
much of the observed heritability, but can explain sizeable
fractions in some instances (e.g., primary metabolites in
Eckert et al. 2012). Of the loci associated with expression

levels, r2 estimates were between 0.05 and 0.152 in all but
one case (n = 54). We also assessed the propensity of individ-
ual loci to be associated to more than one phenotype or ex-
pression level across our literature review. Without correcting
for the multiple associations of a locus to yearly phenotypes
(e.g., bud flush 2009, bud flush 2010), we found that the
average number of loci associated to multiple phenotypes
per study was 6.00, while after correcting for multiple years,
the average number decreased to 5.42. The median number of
SNPs utilized for association per study was 206, where 75%
(39/52) of studies used less than 1000 SNPs, eight studies
using between 1000 and 10,000 SNPs, four studies using be-
tween 29,000 and 35,000 SNPs, and one study utilizing
2,822,609 SNPs for association (all studies with greater than
10,000 SNPs were from either Pinus or Populus species).

Are we out of the woods yet?

From insight gained from the literature review of
genotype-phenotype associations, it seems that the vast
majority of the genetic architecture of local adaptation
and complex traits in trees remains largely unexplained
using common GWAS methods (see also Box 1), a con-
sistent pattern across the past decade of research in trees
(Neale and Savolainen 2004; Savolainen et al. 2007;
Ćalić et al. 2015; Hall et al. 2016). Furthermore, it is
likely that the estimates for percent variance explained
are inflated due to a combination of QTLs that break
down into smaller effect loci (Remington 2015), the
Beavis effect (Beavis 1994; Xu 2003), and the
Winner ’s Curse (Göring et al. 2001; Zöllner and
Pritchard 2007) where locus effects are inflated by using
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Fig. 3 Insights from genotype phenotype literature review. a Counts of
per-locus percent variance explained (r2) estimates from single-locus
genotype-phenotype associations from literature review. Note
logarithmic x-axis. b Distribution of per-locus r2 values for individual
trait groups within genotype-phenotype literature review. Values along

x-axis are total number of estimates and number of species across
estimates. Not shown are nine outliers for disease resistance to
Cronartium ribicola in Pinus monticola (range = [0.402, 1.0]) from Liu
et al. 2017. Abbreviations as in Fig. 1
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the same data for both gene identification and phenotypic
prediction (see Box 1 in Josephs et al. 2017a for a
detailed synopsis of these biases). Such a pattern sug-
gests that, indeed, many of the traits important to evolu-
tionary, breeding, and conservation insight in trees are
likely of a polygenic basis and that future studies must
take this into account when seeking to identify the un-
derlying loci.

Even within studies of model organisms, missing herita-
bility is nothing new. Across taxa, missing heritability is less
frequent within phenotypes of mono- to oligogenic bases (as
seen for the Cr2 major-gene resistant locus in Pinus
monticola, Liu et al. 2017), as would be expected, and is a
recurrent, pervasive shortcoming from genotype-phenotype
associations of complex traits, particularly those maintaining
single-locus perspectives. A number of explanations have
been put forth to explain the missing heritability, such as
epistasis (Hemani et al. 2013) and its inflationary effect on
heritability estimates (Zuk et al. 2012), environmental or
epigenetic interactions (Feldman and Lewontin 1975) as
well as their inflationary effect on heritability estimates
(Zuk et al. 2012), (unmeasured) low-frequency variants of
large effect (Dickson et al. 2010), genetic or variance het-
erogeneity of individual alleles (Leiserson et al. 2013; cf.
Box 1 in Nelson et al. 2013), or common variants with
effect size below detection thresholds (Yang et al. 2010).
As such, here we avoid supporting one causative hypothesis
over another, particularly given the ongoing discussion

within the literature, for which strengths and weakness for
any viewpoint are apparent (e.g., Gibson et al. 2012), and
because of the progress yet to be made in trees.

Indeed, the dissection of the genetic architectures underly-
ing complex traits in trees is still in its nascency compared to
the progress of model organisms (for which missing heritabil-
ity is still an issue), and beyond issues of coverage, genomic
saturation, and genomic resources (discussed below in BThe
Path Forward^), we must approach this issue with all possi-
bilities in mind. Given the unique properties of the life histo-
ries, genome size and organization of many tree species, and
the limited numbers of studies with large sets of molecular
markers, causative sources of the missing heritability should
be ruled out, or supported, as with any other hypothesis, par-
ticularly as we gain information from contemporary studies of
trees that address shortcomings of those in the past. Further,
we must keep in mind differences between functional and
statistical gene action (Álvarez-Castro and Carlborg 2007;
Nelson et al. 2013; Huang and Mackay 2016; Huber et al.
2017). In any case, it seems that sample sizes of single-locus
approaches will need to be increased (Hall et al. 2016), albeit
with diminishing returns (Boyle et al. 2017; Simons et al.
2017), to discover a higher proportion of the underlying loci
in trees due to small to moderate additive effects. Alongside
suggestions outlined in BThe Path Forward,^ incorporating
investigations into such aspects of epistasis, dominance, plei-
otropy, expression, GxE effects, and network analyses (when
appropriate), may be a worthwhile complement (e.g.,

Box 1 A step in the right direction: synergism between GWAS and genomic selection

Early simulations showcased the promise of predicting breeding values frommarker data to accelerate domestication and breeding of plants and animals
(Meuwissen et al. 2001; Bernardo and Yu 2007; Heffner et al. 2009; Zhong et al. 2009), and particularly under the framework of genomic selection
(GS) in trees (Wong and Bernardo 2008; Grattapaglia and Resende 2011; Iwata et al. 2011; defined and reviewed by Grattapaglia 2017). Much of the
early exploration into the applicability of GS in trees discounted the utility of marker-assisted selection (MAS) because of the small estimated effects
for the few loci significantly associated via single-locus approaches at the time, as well as having concerns related to replication because of the
identification of markers across limited parental (genetic) backgrounds (Grattapaglia and Resende 2011; Iwata et al. 2011; Resende et al. 2012a, b).
Based on these arguments and results from simulations, genomic selection was identified as a more promising endeavor thanMAS, particularly if the
breeding cycle can be reduced via efforts such as grafting (Grattapaglia and Resende 2011) or somatic embryogenesis (Resende et al. 2012a).

While GS techniques often can explain a considerable proportion of narrow sense heritability, current implementation of GS in trees is often on par with,
or marginally better than, traditional phenotypic selection when evaluating potential within the same generation and environment (see Table 9.1 in
Grattapaglia 2017). Further, the predictive accuracy of various models are a function of underlying architecture (Resende et al. 2012c; Grattapaglia
2017). As pointed out by Grattapaglia (2017), current marker densities have produced satisfactory results due to the capture of relatedness between
training and validation populations. Here, this success is likely due to the ability of markers to reasonably represent large haplotype blocks (and thus
cumulative action of causative effects) due to the high level of relatedness between training and validation populations. Even so, Grattapaglia (2017)
recommends higher marker densities so that markers also capture true marker-QTL LD and thus sustain long-term accuracies across generations and
environments. We also believe GWAS applications (in the broadest sense) in trees will also see improvements through increased marker densities, the
results of which can then be used to further test specific hypotheses regarding underlying architectures and to increase predictive accuracies of GS as
well. Incorporatingmarkers that putatively underlie the trait of interest into model predictionmay spur opportunities that do not require high degrees of
relatedness between training and validation populations, perhaps to the extent of incorporating material from outbred stands using predictive
approaches (sensu Bérénos et al. 2014; Bontemps et al. 2016) and heritability validation (sensu Castellanos et al. 2015) in the field.

In the end, the realized progress of our understanding regarding the genomics of complex traits in trees will therefore be enhanced by the deposition of
data from both GS and GWAS (as well as other ‘omics’) approaches into a centralized open-access database hub such as TreeGenes (treegenesdb.org).
Future meta-analyses can then synthesize past inquiry to summarize our current understanding of underlying genetic architectures, ultimately
incorporating this knowledge towards future applications in industry and conservation (see “The Path Forward”; Table 1).
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Lotterhos et al. 2017; Mähler et al. 2017; Mizrachi et al. 2017;
Tan et al. 2017).

While the infinitesimal model will continue to prove
to be immensely useful for breeding programs and for
short-term evolutionary predictions, and we may find
that the missing heritability in trees is truly due to con-
sequences of the infinitesimal regime (as is often cited
to be the majority consensus across taxa for missing

heritability), it has been argued that the analysis para-
digm for such studies is near its limits in describing the
functional genetic architecture of quantitative traits, and
that it is therefore necessary to move beyond single-
locus perspectives and reconsider common practices
(Pritchard and Di Rienzo 2010; Nelson et al. 2013;
Sork et al. 2013; Tiffin and Ross-Ibarra 2014;
Wadgymar et al. 2017). At this stage, it seems that we
investigators seeking to describe the genetic architecture
of quantitative traits in trees have some ways yet to go
before we are truly out of the woods. In the next sec-
tion, we describe the path forward to describing genetic
architectures from a polygenic and functional perspec-
tive, identify resources available to advance our knowl-
edge and fill knowledge gaps, as well as future direc-
tions for this research area.

The path forward

As we have outlined, there is still ample room for improve-
ment in our description and understanding of the genetic ar-
chitecture of quantitative traits in trees (see Table 1 and Box
1). Importantly, methods used to uncover causative loci
should take into consideration the expected degree of
polygenicity, the relative contributions of various forms of
gene action, as well as how past evolutionary phenomena
has likely shaped current adaptive expectations. In this sec-
tion, we orient our path forward by first highlighting utilities
available to, and underused within, the forest genetics com-
munity to describe the genetic architecture of complex traits.
We then outline several suggestions to facilitate further prog-
ress and advocate for prospective perspectives in future stud-
ies such that information and data may continue to be used
easily in subsequent syntheses across pathways, environ-
ments, species, and towards insight to identify future needed
resources as our understanding progresses. While our recom-
mendations are specific to the tree community, we also ac-
knowledge other valuable recommendations from recent re-
views (e.g., Savolainen et al. 2013; Tiffin and Ross-Ibarra
2014; Lotterhos and Whitlock 2015; Gagnaire and Gaggiotti
2016; Hoban et al. 2016; Wellenreuther and Hansson 2016;
Burghardt et al. 2017; Wadgymar et al. 2017).

Stepping off the path—what’s in our pack?

The genetic architecture underlying local adaptation and com-
plex traits likely has a polygenic basis composed of many loci
of relatively weak effect yet many of the common association
or outlier methods will often fail to detect many of the caus-
ative loci of small to moderate influence. Such investigations
have so far led to an incomplete description of studied archi-
tectures, and, in many cases, have limited our understanding

Table 1 Where to next? “The Path Forward” identifies meaningful
ways in which we can progress our understanding of the architecture
underlying complex traits in trees. Here, we outline some questions that
can be used to guide future inquiry as the number of markers and
sequence length increase, and annotation becomes more precise and
specific to tree biology

1. Composition and evolution of genetic architectures in trees

(a) How prevalent are non-additive contributions to underlying genetic
architectures in trees? Are there patterns across similar phenotypes or
regulatory networks? Is there evidence that such non-additive effects
have either constrained or facilitated local adaptation?

(b) Are adaptive loci most prevalent in areas of low recombination or
repetitive sequences (e.g., retrotransposons, clustered gene families)?
Do loci of similar effect sizes, expression profiles, or pleiotropic effect
(Lotterhos et al. 2017) experience elevated LD within the genome?
Should genome size influence our expectations for underlying
architectures (Mei et al. 2017)?

(c) At what frequency does local adaptation result in fitness tradeoffs
across environments (Tiffin and Ross-Ibarra 2014; Wadgymar et al.
2017)? And does this interact with demographic history in trees?

(d) Does pleiotropy play a predictable role in underlying tree genetic
architectures (Lotterhos et al. 2017)?

(e) Which aspects of genetic architectures in trees are likely to exhibit
deleterious variation? And howmuch of this signal are we capturing in
genotype-phenotype applications?

2. Inter- and intraspecific variation of genetic architectures in trees

(a) Which aspects of the genetic architecture should we expect to vary
across populations or environments?

(b) Under what conditions in trees are we likely to observe genomic
reorganization across species or ecotypes (e.g., physical linkage or
dispersion)? Will reference genomes be suitable to assess this question
across species or diverged populations, or can long-read sequencing
technologies (reviewed in Jiao and Schneeberger 2017) offer
appropriate resources?

(c) What is the degree of convergent and parallel adaptation within
polygenic architectures across tree populations and species?

(d) At what level of the genetic architecture do we see patterns of
convergence, parallelism, and divergence? Within core hubs, or
perhaps within aspects of the periphery? What does the comparison of
the topologies from such architectures tell us about influential
evolutionary processes?

(e) How often are architectures influenced by variation in expression
levels rather than structural variation in proteins? Do architectures
differ in predictable ways with the prevalence of one or the other? How
can we utilize knowledge synthesized across past approaches to spur
understanding of underlying genetic architectures in trees (Mizrachi
et al. 2017)?
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of complex traits in trees to a handful of loci (see also
Rockman 2012). While we do not advocate that such single-
locus methods be avoided in future studies (considered further
in the next section), here we outline underused and promising
approaches to identify and describe underlying loci that ex-
plicitly take into account the polygenic basis of such traits and
may help advance our understanding in future studies, includ-
ing some of the questions we have outlined in Table 1.
Multivariate, multiple regression, and machine learning tech-
niques are three such examples, and differ from univariate
analyses by analyzing patterns among multiple loci
simultaneously.

The Bayesian sparse linear mixed model (BSLMM), for
instance, such as that deployed in the software package
GEMMA (Zhou et al. 2013), is developed for both genomic
prediction (see also Box 1) and mapping of complex traits that
offers considerable advantages over single-locus genotype-
phenotype approaches (Guan and Stephens 2011; Ehret et al.
2012; Zhou et al. 2013; Moser et al. 2015). This analysis has
gained in popularity recently, being used across diverse taxa
such as stick insects (Comeault et al. 2015; Riesch et al. 2017),
butterflies (Gompert et al. 2015), Darwin’s finches (Chaves
et al. 2016), and trees (Lind et al. 2017). BSLMM is a hybrid
of LMM and Bayesian variable regression that extends the
Lande and Arnold (1983) multiple regression approach in an
attempt to address the sparsity of common data sets used in
genotype associations, where the number of model parameters
(loci) is often much greater than the number of observations
(sampled individuals; Zhou et al. 2013; Gompert et al. 2016).
Specifically, the model takes into account relatedness among
individuals and provides a means to summarize estimates of
selection across the genome such as the proportion of pheno-
typic variation explained (PVE) across genotyped markers by
estimating the combined influence of markers with either
polygenic (infinitesimal) or measureable (moderate to large)
effect, the proportion of PVE explained by genetic loci with
measurable effects (PGE), and the number of loci with mea-
surable effects that underlie the trait (for more details see Guan
and Stephens 2011; Zhou et al. 2013; Gompert et al. 2016).
Additionally, GEMMA returns the posterior inclusion probabil-
ity for each marker providing evidence for association with
the phenotype.While the approach remains promising consid-
ering its performance in the context of genomic prediction and
inference of PVE (e.g., Zhou et al. 2013; Speed and Balding
2014), there has been no attempts, to our knowledge, to assess
the approach under various demographic histories, genetic
architectures, and sampling designs. A close approximation
to this comes from analyses carried out by Gompert et al.
(2016), in which GEMMA was evaluated for PVE estimation,
estimated effects of causative loci, and the estimated number
of underlying SNPs based on various author-specified num-
bers of causal loci, underlying heritability ranges, and num-
bers of sampled individuals. In short, the authors convey that

GEMMA is promising, but that there are important limitations to
consider (Gompert et al. 2016). However, because the authors
simulated architectures by randomly assigning effects to loci
from an empirically derived sequence data set, and while they
were thorough in their data exploration, we encourage these
results be replicated in silico through full modeling of geno-
mic loci across various demographic, LD, sampling, and ar-
chitecture scenarios to ensure underlying allele frequencies
among populations and LD (within and among populations)
reflect realistic patterns which may have an effect on model
performance. Such additional analyses will also allow for
more specific insight into model performance based on a
priori biological insight available to investigators, allowing
more informed decisions when choosing an appropriate
genotype-phenotype association method such as BSLMM.

Random Forests (Breiman 2001) is a machine learning
algorithm used to identify patterns in highly dimensional data
sets to further generate predictive models. Alongside uses out-
side of evolutionary biology, the Random Forests algorithm
has gained popularity in association studies across taxa as well
as in trees such as that of genotype-phenotype associations in
Sitka spruce (Picea sitchensis; Holliday et al. 2012) and
genotype-environment associations in white spruce
(P. glauca; Hornoy et al. 2015). Random Forests is based upon
classification (for discrete variables, e.g., soil type) and regres-
sion (continuous variables; e.g., temperature or phenotypic
measurements) trees (so-called CARTmodels). During its im-
plementation, Random Forests creates these decision trees
using two layers of stochasticity: the first layer is used to grow
each tree by using a bootstrap sample of observations (envi-
ronmental or phenotypic) while the second uses a random
subset of predictors (marker loci) to create a node which is
then split based on the best split of the observations across
permutations of predictors using the residual mean square
error (see Fig. 2 in Hornoy et al. 2015). The observations that
were not used as training data to create the model are then used
to estimate model accuracy, which can be further used to as-
sess variable importance (Holliday et al. 2012; Hornoy et al.
2015; Forester et al. 2017).

While creating a promising alternative to univariate ap-
proaches, until recently, the Random Forests algorithm has
not been fully explored to assess model performance for use
in association studies. Forester et al. (2017) provide a thor-
ough analytical assessment using simulated data to remark on
performance for use in genotype-environment association
studies (GEA). In their analysis, they used published simula-
tions of multilocus selection (Lotterhos and Whitlock 2014,
2015) of various demographic histories and selection intensi-
ties across 100 causative (with 9900 neutral) loci to compare
the Random Forests algorithm to the multivariate approaches
of constrained ordination (redundancy analysis, RDA, and
distance-based RDA, dbRDA—both of which are mechanis-
tically described in Legendre and Legendre 2012, but are
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multivariate analogs of multiple regression on raw or distance-
based data) and to the univariate latent factor mixed model
(LFMM). In short, Forester et al. (2017) found that LFMM
performed better than Random Forests as a GEA, while
constrained ordinations resulted in relatively lower false pos-
itive and higher true positive rates across levels of selection
than both Random Forests and LFMM. Additionally, the au-
thors found that correction for population structure had little
influence on true and false positive rates of ordination
methods, but considerably reduced true positive rates of
Random Forests. They also note that further testing is needed
across various evolutionary scenarios. Even so, constrained
ordination provides an effective means by which to detect loci
under a range of both strong and weak selection (Forester et al.
2017). While promising under a GEA framework, future anal-
yses may provide evidence that such methods also perform
well in genotype-phenotype associations as well. Empirically,
it has been used in trees to explore multivariate relationships
between phenotypes, genotypes, and environments (e.g., Sork
et al. 2016). Additionally, there have been many extensions of
the original Random Forests model, such that extensions with
purportedly better performance should be assessed alongside
other popular association methods in the future.

Once a set of candidate loci have been identified to puta-
tively underlie a phenotype or environment of interest, these
loci can be used to further test the hypothesis of polygenic
local adaptation. For instance, Berg and Coop (2014) use the
significant hits from GWAS data sets to estimate within-
population additive genetic values by calculating the
frequency-weighted sum of effects across these loci. These
values are then compared to a null model of genetic drift that
accounts for population structure to test for an excess of var-
iance among populations, ultimately identifying the popula-
tions most strongly contributing to this signal. The excess
variance statistic (Qx) is analogous to QST and is composed
of two quantities—an FST-like component describing allele
frequency differentiation across populations and a LD-like
component describing coordinated and subtle allele frequency
shifts across populations. This method thus allows explicit
hypothesis tests related to the expected polygenic architecture
of local adaptation across populations of trees. It is also note-
worthy in that it combines aspects of the genotype-
environment-phenotypic spectrum that underlies local adapta-
tion within a single methodological framework (cf. Sork et al.
2013). Prior attempts take a pairwise approach examining
each pairwise combination of the genotype-environment-
phenotype spectrum (e.g., Eckert et al. 2015). Despite the
promising insight from this method, it has not been used wide-
ly outside of model organisms. Future applications in trees
should consider the number of causal loci identified to be
associated with quantitative phenotypes (driven somewhat
by the number of loci used in mapping studies), the number
of populations needed to increase power, especially in the

correlation of genetic values to environmental data, and the
ability to reliably estimate genotypic effects.

At the trail junction—where to next?

While we have outlined methods above that have not yet
realized their full potential in describing genetic architecture
of complex traits in trees, there are several matters that we, as a
field, must keep in mind such that we can continue to progress
our understanding in the most efficient manner. Here, we be-
lieve the path forward lies in three critical areas which we
discuss in further detail below: (1) needed data, (2) standard-
ized data reporting, and (3) empirical studies in trees designed
to test theoretical expectations of genetic architectures.

Needed data

While the common garden approach can facilitate understand-
ing of evolutionary processes without specifically identifying
underlying loci (Rausher and Delph 2015), identifying fea-
tures of the genetic architecture will ultimately inform breed-
ing applications important to management, conservation, and
industry, and thus requires knowledge about underlying loci.
Consequently, we have not yet had sufficient sampling of both
marker densities and studies amenable to replication across
systems to truly exhaust the use of single-locus approaches,
particularly as the sample size of markers, individuals, and
populations increase in the near future. Indeed, Hall et al.
(2016) estimated that the number of causative loci underlying
quantitative traits in trees is likely in the several hundreds and
to capture 50% of the heritable genetic variation using single-
locus approaches, population sizes of about 200 will be need-
ed for mapping disease traits, and about 25,000 for traits such
as growth. Even so, we recommend that such single-locus
associations should not be used as the sole method of archi-
tecture description as we carry out future studies unless justi-
fied a priori based on biological principles, knowledge of the
expected architecture, and/or for testing specific hypotheses.
While the limits of such methods should be considered, these
approaches can be used alongside other lines of evidence to
either support or spur further testing of underlying loci (sensu
Sork et al. 2013). For instance, there is little downside to
performing both a single-locus association and a multivariate
analysis in the same study, even if some or all of the results for
a given technique are excluded to the supplement (e.g., Sork
et al. 2016). Further, contextualizing genotype-phenotype and
genotype-environment relationships with results that describe
local adaptation (e.g., phenotype-environment, QST-FST com-
parisons) can also stimulate further understanding particularly
for data that is made publically available for future synthesis.
Specifically, studies which do so within the context of com-
parisons within and across species (e.g., Yeaman et al. 2016)
or environments (Holliday et al. 2016), offer unique
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circumstances under which to advance our understanding of
complex traits in trees (Table 1; Lotterhos andWhitlock 2015;
Ćalić et al. 2016; Hoban et al. 2016; Ingvarsson et al. 2016;
Mahler et al. 2017).

Isozymes (Adams and Joly 1980), restriction fragment
length polymorphisms (Devey et al. 1994), randomly ampli-
fied DNA (Grattapaglia and Sederoff 1994), and expressed
sequence tag polymorphisms (Temesgen et al. 2001) were
among the first used to test evolutionary hypotheses in trees
related to genome organization and the mapping of complex
traits (discussed in Eckert et al. 2009). Marker technology has
progressed considerably since this time (dozens of markers) to
include markers capable of more densely sampling tree ge-
nomes (up to millions of markers). For example, array-based
designs (Silva-Junior et al. 2015) and exome capture (Suren
et al. 2016) allow for hundreds to tens of thousands of both
genic and intergenic markers (which can be dwarfed by the
number of subsequently called SNPs) whereas RADseq
(reviewed in Parchman et al. forthcoming) is in the range of
tens to hundreds of thousands of markers (e.g., Parchman et al.
2012) and whole genome sequencing in the range of millions
(e.g., Stölting et al. 2015). However, while the continual ad-
vent of sequencing technology will likely allow for more
SNPs and longer sequences, it is ultimately the concordance
between polygenic expectations and analytical methods of
marker data that will determine the success of such endeavors.
With this in mind, future studies aimed at answering outstand-
ing questions (Table 1) will benefit from a diverse set of
markers that represent both functional proteins (genic regions)
as well as those which control aspects of their expression or
post-transcriptional regulation. If one lesson is to be gained
from the recent discussion of the applicability of reduced rep-
resentation techniques (Lowry et al. 2016, 2017; Catchen et al.
2017; McKinney et al. 2017), it is that genomic resources are
paramount to advancement of knowledge, especially when
developed with knowledge of patterns of linkage disequilibri-
um or, if not with this knowledge, with goal of quantifying it.
However, RADseq remains one of the most cost-effective
approaches available to trees and should thus be assessed in
the specific context of tree species, particularly when strengths
and limitations are understood and addressed (as reviewed in
Parchman et al. forthcoming). Nomatter the approach used for
association, some aspect of the architecture is likely to be
missed in trees. For example, RADseq-based markers devel-
oped within large genomes are not enriched within genic re-
gions where structural changes to proteins are expected to
affect phenotypes, although choice of enzymes can affect the
relative proportion of genic regions in tree genomes, as evi-
denced from in silico digestions of reference genomes from
Populus, Eucalyptus, Amborella, Pseudotsuga, and Pinus
species (Parchman et al. forthcoming). In contrast, exome-
based approaches are anchored within coding regions thus
excluding putative regulatory elements outside of the exomic

regions used to develop probes. Recent marker development
approaches, such as RAPTURE (Ali et al. 2016), however,
have blurred the lines between RADseq and exome based
approaches and, in addition to targeted capture approaches,
may offer a promising, cost-effective path forward that explic-
itly avoids biased assumptions about the importance of
exomic versus intergenic loci comprising the architecture of
local adaptation.

Beyond dense genetic linkage maps (e.g., Friedline
et al. 2015) and reference genomes, which undoubtedly
should be among our top priorities, other techniques
outside of traditional genomics, such as transcriptomics,
have the potential to complement genomic studies in
many ways without great need for existing species-
specific resources (reviewed in Romero et al. 2012;
Strickler et al. 2012; Vialette-Guiraud et al. 2016). For
instance, comparative transcriptomic techniques in trees
can be used to identify putatively orthologous sets of
markers (e.g., Wachowiak et al. 2015; Yeaman et al.
2016) that can be used to describe the evolution of
architecture (e.g., shared orthologs versus paralogs
across species) or for comparative linkage mapping
(Ritland et al. 2011) across systems. Additionally, with
the appropriate study design, transcriptomics can be im-
plemented in tree species to describe various aspects of
differential expression (Cohen et al. 2010; Carrasco
et al. 2017; Cronn et al. 2017), selective constraint
(Mähler et al. 2017), prevailing selective forces
(Hodgins et al. 2016), mapping of disease resistance
(Liu et al. 2016; Liu et al. 2017), and regulatory net-
works (Zinkgraf et al. 2017). The multilocus paradigm
of transcriptomics is amenable to identifying and testing
hypotheses of the genetic architecture of complex traits
in a network framework (Jansen et al. 2009; Leiserson
et al. 2013; Civelek and Lusis 2014; Feltus 2014) and
will no doubt provide valuable contributions for tree
evolutionary biologists. Other areas amenable to net-
work description such as metabolomics and proteomics
would also be a complement (Feltus 2014; Cowen et al.
2017), particularly if genetic studies contextualize re-
sults with findings from such approaches and vice
versa . Ul t imate ly, the goal is to use a pr ior i
knowledge synthesized across past studies, techniques,
and perspectives to guide further hypotheses about
underlying architecture, as exemplified by Mizrachi
et al. (2017) and Lotterhos et al. (2017). Finally, high-
throughput phenotyping as well as environmental mea-
sures at fine spatial scales below square-kilometers will
also facilitate and advance our understanding of com-
plex traits in trees (Sork et al. 2013; Rellstab et al.
2015; Leempoel et al. 2017), particularly when mea-
sured phenotypes well represent those experiencing se-
lection pressure, and environmental measures well

 29 Page 18 of 30 Tree Genetics & Genomes  (2018) 14:29 



represent the multivariate environment imposing selec-
tion (Lotterhos et al. 2017).

Standardized data reporting

As we continue to accrue genotype-phenotype, genotype-en-
vironment, and phenotype-environment relationships within
and across tree species, authors should consider how their
results can most effectively be used in further studies and
syntheses, both for the purpose of validation or comparison
as well as novel insights yet to be seen. Here, we outline a few
suggestions that can be broken down into reporting within
manuscripts and metadata. For instance, in our survey of com-
mon garden studies used to estimate h2 andQST, inmany cases
the exact design of the study could not be replicated with the
information from the manuscript alone. While an abbreviated
design may be suitable for the main text, authors can provide
much more detail in supplemental materials that can facilitate
replication and comparison across studies (e.g., total individ-
uals per garden, family, or block—as opposed to averages or
ranges), which will ultimately facilitate syntheses regarding
future directions. Further, future studies would benefit from
estimating relatedness usingmarker data which will ultimately
improve the precision of h2, QST, and missing heritability es-
timates (de Villemereuil et al. 2015) including those estimates
made in the field (Castellanos et al. 2015). For cases in which
estimating relatedness from markers is not appropriate or fea-
sible, the field would benefit by authors exploring a range of
underlying sibships (e.g., Eckert et al. 2015), which are often
assumed to be half-sib relationships. While some studies in
our survey assumed a mixed sibship relationship for open-
pollinated sources, ultimately such assumptions without data
exploration will affect the outcome or conclusions for any
given study. A recently released R package by Gilbert and
Whitlock (2015) allows for such an exploration of effects of
mixed sibships on inference of QST and its magnitude relative
to FST (see also Whitlock & Guillaume 2009, Whitlock &
Gilbert 2012). Inclusion of such exploration, even in the sup-
plement, will help contextualize such studies as they are pub-
lished. For studies estimating causality for genotype to phe-
notype, it would be worthwhile to include the regression co-
efficients or other estimates of effect size (e.g., odds ratios) in
addition to PVE (r2). Importantly, the units of the effect size
must be explicitly reported (e.g., Julian days versus phenotyp-
ic standard deviations), with the standard deviation also re-
ported. For all association studies, supplemental tab- or
comma-delimited text files (outside of a word processing doc-
ument) easily analyzed with programming languages would
also facilitate synthesis (even if providing redundant informa-
tion from the main text), particularly if such files are well
described with a README file and contained data regarding
marker position, putative orthogroups, hits to reference ge-
nomes, effect size, PVE, genotypes by individual identifiers,

individual population assignments, and if the sequence or
marker was significantly associated to phenotype or environ-
ment. Such an operating procedure may work well in the short
term; however, in the long term, such information will need to
be easily accessible from one or a central hub of repositories.

Data standardization, the inclusion of meta-information,
and compilation of these data specific to trees into a database
with common terminology will be crucial to future inquiries
with the purpose of synthesizing evidence for underlying ar-
chitectures across species and environmental systems (e.g., as
for human GWAS data: https://www.ebi.ac.uk/gwas/). If the
data generated by tree biologists is disparate and housed
across databases and journal supplements this impedes
synthesis first by forcing scientists to collate information
across sources, which may be further impeded by data
redundancies or inconsistencies in data format and utilized
nomenclature (Wegrzyn et al. 2012). While many journals
have required submission of sequence data to repositories
such as NCBI, such databases are lacking with regard to in-
formation pertaining to phenotypic, environmental, and geo-
graphic information upon which much of the foundation of
our field is built. Submissions to Dryad somewhat overcome
this, but there is no standardization within the community for
content for such submissions and important information may
be lacking. Currently, this information is often appended in
supplemental files that cannot be readily accessed, compared,
or queried in an efficient manner. Hierarchical ontologies can
be used to ease this burden. Gene Ontology is likely the most
recognizable to evolutionary biologists, but there also exist
Plant Ontologies for organismal structure and developmental
stages, Environmental Ontologies for habitat categorization,
and Phenotypic, Attribute, and Trait Ontologies for the anno-
tation of phenotypes. Such ontologies not only standardize
nomenclature, but also assist in database queries. The utiliza-
tion of such databases will no doubt encourage comparative
studies and syntheses, as infrastructure and data accessibility
are essential to the comparative approach (Neale et al. 2013;
Ingvarsson et al. 2016; Plomion et al. 2016). Luckily, such a
database exists for the broader tree genetics community. The
open-source genomics and phenomics database, called
TreeGenes (treegenesdb.org), is part of a central hub of
repositories, including the Hardwood Genomics Project
(hardwoodgenomics.org) and the Genome Database for
Roseaceae (rosaceae.org), that communicate and integrate
data from each other. Unlike many other repositories for tree
genomic data, TreeGenes is not project or institution specific.
The data and metadata for roughly 1700 species housed on
TreeGenes can be accessed, queried, and visualized through
DiversiTree, a web-based, desktop-style interface (Wegrzyn
et al. 2008). DiversiTree connects to the geographical inter-
face CartograTree (Vasquez-Gross et al. 2013) to encourage
comparative synthesis by providing technology to filter and
visualize geo-referenced biotic and abiotic data housed on
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TreeGenes. As promising as such database hubs are, they are
only as useful as the data that is deposited to them. While
TreeGenes will regularly import and enhance data from public
repositories (through e.g., sequence alignment to published
genomes, or data from Genbank, Phytozome, PLAZA, etc),
often pertinent metadata necessary for comparative synthesis
is lacking (Wegrzyn et al. 2008, 2012). Indeed, from our sur-
vey of published GPA since the release of the database in
2008, less than 13% (6/48) of the studies submitted their data
directly to TreeGenes. To better prepare for future synthesis,
we advocate that authors submit their data to the TreeGenes
database and that reviewers and editors enforce this habit, as
currently implemented for linkage maps published in Tree
Genetics & Genomes. Consolidated, open-source resources
will be crucial to the advancement of this field (Neale et al.
2013), and will no doubt spur knowledge that would not have
been recognized otherwise. Prime examples of advancement
to knowledge because of these types of resources and
community-wide efforts come from the human GWAS litera-
ture where such resources provide crucial information neces-
sary to study polygenic adaptation (e.g., Berg and Coop
2014).

Empirical tests of theory

In combination with the development of truly genome-wide
public resources, there is need to use these resources to
validate and better characterize foundational ideas and
assumptions in the theory of polygenic adaptation relative to
the life history strategies of tree species. For example,
Gagnaire and Gaggiotti (2016) highlight that the degree of
polygenicity can be tested as a function of the number of
GWAS hits relative to the length of contigs or chromosomes
containing these markers. Simple models of polygenicity pre-
dict that there should be a positive correlation between these
quantities. Thus, rather than assuming some functional form
of a polygenic architecture (i.e., an approximate infinitesimal
model) during analysis, researchers can strive to characterize,
or at least exclude some forms of, the underlying genetic ar-
chitecture prior to interpretation. In a related fashion, publical-
ly available data sets would spur comparisons across species
and study systems to test hypotheses about polygenic archi-
tectures (e.g., the modularity of genetic architectures as in
Lotterhos et al. 2017, or perhaps genomic organization or
effect size distribution) due to the relative timing of selection,
degree of environmental contrast (e.g., diversifying selection
and changes to the strength of negative selection), selection
strength, and level of gene flow across diverging lineages. As
an example, much of the theory of polygenic adaptation re-
quires assumptions about simplistic demographics (where vi-
olations have consequences for standing levels of non-neutral
diversity, e.g., Wang et al. 2017) and the equilibration among
co-acting evolutionary forces over a large number of

generations (Brandvain and Wright 2016). Indeed, differing
architectures are expected as a function of the timing for the
onset of selection (Le Corre and Kremer 2003; Kremer and Le
Corre 2012), with subtle allele frequency shifts across popu-
lations dominating architectures near the onset of selection
and larger allele frequency shifts much later in time. While
there is need for empirical validation of this theory, there is
also a need to characterize the prevalence of its predicted
patterns across differing clades of tree species. In other words,
researchers could imagine testing the theory itself in natural
populations (e.g., as begun by Le Corre and Kremer 2012) or
assuming its validity and characterizing the circumstances un-
der which to expect large shifts in allele frequencies across
tree species with differing life history strategies. Little of any
of this (Table 1), however, will be possible without develop-
ment of needed data and its deposition into publically avail-
able, standardized databases.

Concluding remarks

The Path Forward provides a means by which we can most
efficiently describe the underlying genetic architectures of
traits important to management, conservation, and industry,
which can ultimately be used to expedite breeding projects
(Box 1). The past evolutionary history will have a profound
effect on the underlying genetic architecture of such traits, and
thus strengths and weakness of the data and methods used to
uncover such architecture should be specifically addressed in
the future, particularly in how utilizedmethods perform across
various demographic and architecture scenarios. Insights
gained from empirically testing theory will also contribute to
the advancement of this field and will ultimately quantify the
variation in architecture across environments and species and
inform effective management. Importantly, the success of fu-
ture genotype-phenotype efforts should not be predicated on
past studies using single-locus approaches and small numbers
of markers, and instead on overcoming such shortcomings by
applying theoretical expectations to empirical inquiry. Even
so, until sequencing technologies allow for cost-effective
whole genome sequencing of individual trees, most
genotype-phenotype studies (GS included) will be carried
out via reduced representation techniques (i.e., a subset of all
sites within the genome). Therefore, it is essential that proc-
essed data be uploaded to a repository that, in addition to raw
sequences, includes genotypic, environmental, and spatial da-
ta, facilitates user-friendly queries, and allows for future meta-
analysis. The future is bright, but we are not yet out of the
woods. As such, efficient advancement in this field relies on
community efforts, standardized reporting, centralized open-
access databases, and continual input and review within the
community’s research.
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