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1 

Abstract13 

Anthropogenically driven changes in land use and climate patterns pose unprecedented 14 
challenges to species persistence. To understand the extent of these impacts, genomic 15 
offset methods have been used to forecast maladaptation of natural populations to future 16 
environmental change. However, while their use has become increasingly common, little 17 
is known regarding their predictive performance across a wide array of realistic and 18 
challenging scenarios. Here, we evaluate four offset methods (Gradient Forests, the Risk-19 
Of-Non-Adaptedness, redundancy analysis, and LFMM2) using an extensive set of 20 
simulated datasets that vary demography, adaptive architecture, and the number and 21 
spatial patterns of adaptive environments. For each dataset, we train models using either 22 
all, adaptive, or neutral marker sets and evaluate performance using in silico common 23 
gardens by correlating known fitness with projected offset. Using over 4,850,000 of such 24 
evaluations, we find that 1) method performance is largely due to the degree of local 25 
adaptation across the metapopulation (LAΔSA), 2) adaptive marker sets provide minimal 26 
performance advantages, 3) within-landscape performance is variable across gardens and 27 
declines when offset models are trained using additional non-adaptive environments, and 28 
4) despite (1), performance declines more rapidly in novel climates for metapopulations 29 
with higher LAΔSA than lower LAΔSA. We discuss the implications of these results for 30 
management, assisted gene flow, and assisted migration.31 
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1 | Introduction 32 

 The impacts of climate change, 33 
habitat loss, and extreme weather 34 
events pose urgent challenges to the 35 
management of species, communities, 36 
habitats, and ecosystem services 37 
(Bonan, 2008; Doney et al., 2012; 38 
Hoegh-Guldberg & Bruno, 2010). 39 
Traditional methods used to infer 40 
environmental suitability, such as 41 
reciprocal transplants and common 42 
gardens, require time and resources that 43 
may not be available or feasible for 44 
many organisms of management 45 
concern, particularly for long-lived 46 
organisms where reproductive stages 47 
occur after several decades of 48 
development. Ecological forecasting 49 
models have therefore become 50 
increasingly germane to support 51 
environmental decision making by 52 
managers across both terrestrial and 53 
marine systems.  54 
 In the context of population 55 
viability in the face of environmental 56 
change, many of these models rely on 57 
theoretical expectations that the limits 58 
of species’ distributions are primarily 59 
determined by the distribution of 60 
environmental conditions (e.g., Good 61 
1931), and that occupancy of highly 62 
suitable habitat enables increased 63 
abundance through greater survival and 64 
reproduction (i.e., fitness) of individuals 65 
(Brown, 1984). Such methods, termed 66 
species distribution models or ecological 67 
niche models (see Elith & Leathwick, 68 
2009 for a discussion on terminology) 69 
are correlative approaches that are 70 

often used to predict (relative) habitat 71 
suitability for a single species (Lee‐Yaw et al., 72 
2022). This information is used to understand 73 
potential impacts on the species from future 74 
climate change. However, these methods often 75 
ignore aspects of the species’ evolutionary 76 
history that could be important for predicting 77 
long-term population persistence, such as the 78 
environmental drivers of local adaptation or 79 
spatial patterns of adaptive genetic variation 80 
(Waldvogel et al., 2020). 81 
 Subsequent methods, termed genomic 82 
offsets (reviewed in Capblancq et al., 2020; 83 
Rellstab et al., 2021), have attempted to 84 
address these shortcomings by modeling 85 
relationships between environmental and 86 
genetic variation to predict maladaptation of 87 
natural populations to either future climates 88 
in situ, or to predict the relative suitability of 89 
these populations for the specific environment 90 
of a restoration site. Empirical attempts to 91 
confirm predictions from genomic offset 92 
models are rare and, compared to attempts in 93 
silico (Láruson et al., 2022), have found 94 
relatively weaker relationships between 95 
predicted maladaptation to common garden 96 
climates and the measurement of phenotypic 97 
proxies for fitness from individuals grown in 98 
these same environments (e.g., Capblancq & 99 
Forester, 2021; Fitzpatrick et al., 2021; Lind 100 
et al., 2024). Even so, these empirical results 101 
have consistently shown the expected 102 
negative relationship between predicted offset 103 
and common garden performance. Further, 104 
many of these studies found that genomic 105 
offsets often perform better than climate or 106 
geographic distance alone (e.g., Capblancq & 107 
Forester, 2021; Fitzpatrick et al., 2021; 108 
Láruson et al., 2022; Lind et al., 2024). 109 
 Across empirical and in silico studies, little 110 
difference in performance was found between 111 
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models trained using only adaptive 112 
markers (i.e., known in silico, or 113 
candidates from empirical genotype-114 
environment [GEA] associations) and 115 
those chosen at random, suggesting that 116 
genome-wide data may be sufficient to 117 
capture signals relevant to 118 
environmental adaptation.  119 
 Together, these results suggest that 120 
genomic offset methods may provide 121 
valuable insight for management. Little 122 
is known, however, about how robust 123 
these methods are across a wide array 124 
of realistic empirical scenarios, nor the 125 
extent to which independent methods 126 
will arrive at similar conclusions when 127 
analyzing the same data. Indeed, 128 
concerns regarding the accuracy of 129 
ecological forecasting models present a 130 
primary limitation towards 131 
incorporating inferences from these 132 
models into management (Clark et al., 133 
2001; Schmolke et al., 2010) and 134 
genomic offset models are no exception. 135 
Major questions still remain about how 136 
performance is affected by aspects of 137 
the evolutionary history of sampled 138 
populations, the type of signals in 139 
putatively ideal datasets that may 140 
mislead offset inference, the importance 141 
of identifying environmental drivers of 142 
local adaptation a priori, and the 143 
consistency of predictive performance 144 
across contemporary environmental 145 
space. Finally, because novel climates 146 
with no recent analog are expected to 147 
increase in the future (Lotterhos et al., 148 
2021; Mahony et al., 2017) there is also 149 
uncertainty regarding the performance 150 
of forecasting models when predictions 151 
are made to environments that 152 

drastically differ from those used to train and 153 
build the models themselves (Fitzpatrick et 154 
al., 2018; Lind et al., 2024). 155 
 While much uncertainty remains 156 
regarding the predictive performance of 157 
genomic offsets, the domain of applicability 158 
(i.e., the circumstances under which a method 159 
is acceptably accurate) for these methods can 160 
be more precisely defined using simulated 161 
data (Lotterhos et al., 2022). Simulated data, 162 
where there is no error in the estimation of 163 
allele frequencies, environmental variables, 164 
individual fitness, or the knowledge regarding 165 
the drivers of local adaptation, present ideal 166 
circumstances for understanding the limits of 167 
genomic offsets and the circumstances under 168 
which data from naturally occurring taxa will 169 
provide useful inference. To provide relevant 170 
inference regarding the domain of 171 
applicability, simulations should capture the 172 
complexities of empirical data with biological 173 
realism (e.g., clinal or patchy environments), 174 
present contrasting cases of differing scenarios 175 
while controlling for important features of the 176 
data (e.g., varying population connectivity 177 
but controlling for mean differentiation), and 178 
challenge methods using adversarial scenarios 179 
that capture extreme characteristics of 180 
empirical data (e.g., prediction to novel 181 
environments with no current analog 182 
available for model training; Lotterhos et al. 183 
2022). 184 
 Here, we use a wide array of previously 185 
published biologically realistic, contrasting, 186 
and adversarial simulations from Lotterhos 187 
(2023) in an attempt to more precisely define 188 
the limits of predictive performance of five 189 
genomic offset methods (Table 1): Gradient 190 
Forests (GFoffset; sensu Fitzpatrick & Keller, 191 
2015), the Risk Of Non-Adaptedness (RONA, 192 
Rellstab et al., 2016), Latent Factor Mixed 193 
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https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=09008973774041196&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:d999943a-fd84-4d0e-83a5-15a810fb654d&options=%7B%22manual_text_override%22%3A%22Fitzpatrick%20%26%20Keller%2C%202015%22%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=9426988980095444&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:c3d42cf9-d3d4-494b-8d76-ca3a686a9315&options=%7B%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3Ac3d42cf9-d3d4-494b-8d76-ca3a686a9315%22%3A%7B%22prefix%22%3A%22RONA%2C%20%22%7D%7D%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=9426988980095444&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:c3d42cf9-d3d4-494b-8d76-ca3a686a9315&options=%7B%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3Ac3d42cf9-d3d4-494b-8d76-ca3a686a9315%22%3A%7B%22prefix%22%3A%22RONA%2C%20%22%7D%7D%7D
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Models (LFMM2offset, sensu Gain & 194 
François, 2021, and redundancy analysis 195 
(RDAoffset, sensu Capblancq & Forester, 196 
2021). The main goal of this study was 197 
to understand how the evolutionary and 198 
experimental parameters used in the 199 
training and evaluation of offset 200 
methods affect the accuracy of the 201 
methods’ projections of maladaptation 202 
under ideal empirical scenarios (i.e., 203 
using data with no inherent error). 204 
Using these scenarios, we ask the 205 
following six questions: 1) Which 206 
aspects of the past evolutionary history 207 
affect performance of offset methods? 2) 208 
How is offset performance affected by 209 
the proportion of loci with clinal alleles 210 
in the data? 3) Is method performance 211 
driven by causal loci or by genome-wide 212 
patterns of isolation-by-environment? 213 
4) What is the variation of model 214 
performance across the landscape? 5) 215 
How does the addition of non-adaptive 216 
nuisance environments in training affect 217 
performance? 6) How well do offset 218 
models extrapolate to novel 219 
environments outside the range of 220 
environmental values used in training? 221 

2 | Methods 222 

 Throughout this manuscript we will 223 
be citing code used to carry out specific 224 
analyses in-line with the text. 225 
Supplemental Notes S1-S2 outlines and 226 
describes the sets of scripts or, most 227 
often, jupyter notebooks, used to code 228 
analyses. Scripts and notebooks are 229 
both referenced as Supplemental Code 230 
(SC) using a directory numbering 231 
system (e.g., SC 02.05). More 232 

information regarding the numbering system, 233 
archiving, and software versions can be found 234 
in the Data Availability section. 235 

2.1 | Explanation of Simulations and 236 
Training Data 237 

 To train offset methods we used single 238 
nucleotide polymorphism (SNP) and 239 
environmental data from a set of previously 240 
published simulations (225 levels with 10 241 
replicates each) of a Wright-Fisher 242 
metapopulation of 100 demes on a 10 x 10 grid 243 
evolving across a heterogeneous landscape 244 
(Lotterhos, 2023). Each dataset was 245 
simulated under a combination of the 246 
following four evolutionary parameters: i) 247 
three landscapes (10 populations x 10 248 
populations) that varied in vicariance and 249 
environmental gradients (Estuary -  Clines; 250 
Stepping Stone - Clines; and Stepping Stone - 251 
Mountain), ii) five demographies that varied 252 
population size and migration rates across the 253 
landscape, iii) three genic levels that varied in 254 
the effect size and number of mutations 255 
underlying adaptation (mono-, oligo-, and 256 
polygenic), and iv) five pleiotropy levels that 257 
varied the number of quantitative traits under 258 
locally stabilizing selection (ntraits ∈ {1, 2}), 259 
presence of pleiotropy (when ntraits = 2), and 260 
variability of selection strength across 261 
individual traits (see Fig. 1 in Lotterhos 262 
2023). 263 
 The adaptive trait(s) were under selection 264 
by a different environmental variable, where 265 
the optimum trait value was given by the 266 
local environment on the landscape. The 267 
adaptive trait(s) undergoing selection 268 
responded to either a latitudinal temperature 269 
gradient (temp; ntraits = 1), or to both temp 270 
and a longitudinal “Env2” gradient (ntraits = 271 

https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=4703312511978943&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:6ca37fcd-65be-4499-91f7-0084fa39d84d&options=%7B%22manual_text_override%22%3A%22Gain%20%26%20Fran%C3%A7ois%2C%202021%22%2C%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3A6ca37fcd-65be-4499-91f7-0084fa39d84d%22%3A%7B%22prefix%22%3A%22LFMM2%2C%20%22%7D%7D%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=4703312511978943&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:6ca37fcd-65be-4499-91f7-0084fa39d84d&options=%7B%22manual_text_override%22%3A%22Gain%20%26%20Fran%C3%A7ois%2C%202021%22%2C%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3A6ca37fcd-65be-4499-91f7-0084fa39d84d%22%3A%7B%22prefix%22%3A%22LFMM2%2C%20%22%7D%7D%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=11845714517872563&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:1f8b86de-4ebd-433d-b23d-fad0230fd74b&options=%7B%22manual_text_override%22%3A%22Capblancq%20%26%20Forester%2C%202021%22%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=11845714517872563&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:1f8b86de-4ebd-433d-b23d-fad0230fd74b&options=%7B%22manual_text_override%22%3A%22Capblancq%20%26%20Forester%2C%202021%22%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=6555882499907055&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:c0f1de83-69a9-4564-b0ba-5cf548664a7f
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2). Env2 represented distinct biological 272 
analogies depending on the context: in 273 
the Stepping Stone - Mountain 274 
landscape Env2 was analogous to 275 
elevation (e.g., as with tree species), 276 
whereas in the Estuary - Clines 277 
landscape the Env2 environment was 278 
analogous to gradients of salinity within 279 
coastal inlets connected only by the 280 
outer marine (ocean) environment (e.g., 281 
as with stickleback or oyster species). 282 
 Twenty independent linkage groups 283 
were simulated. Of these, mutations 284 
that had effects on one or more 285 
phenotypes under selection (i.e., 286 
quantitative trait nucleotides, QTNs) 287 
were allowed to evolve on only ten 288 
linkage groups, and neutral mutations 289 
were added to all 20 linkage groups with 290 
tree sequencing (for details see 291 
Lotterhos 2023). Adaptive traits were 292 
determined additively by effects of 293 
QTNs. 294 
 In all simulations, phenotypic clines 295 
evolved between each trait and the 296 
selective environment (Lotterhos, 297 
2023), where populations became 298 
locally adapted to their environment, 299 
measured at the metapopulation level 300 
as the mean difference of demes in 301 
sympatry minus allopatry (LAΔSA, 302 
Blanquart et al., 2013). LAΔSA equates 303 
to the average levels of local adaptation 304 
at the deme level which can be 305 
calculated for each deme by both home-306 
away (LAΔHA) and local-foreign 307 
(LAΔLF) measures. 308 
 These simulations represent a wide 309 
array of realistic, contrasting, and 310 
adversarial scenarios in which we could 311 
more precisely define the domain of 312 

applicability of offset methods. For instance, 313 
in the Stepping Stone - Mountain landscape, 314 
geographic distance and environmental 315 
distance were not strongly correlated, whereas 316 
in the Stepping Stone - Clines and Estuary - 317 
Clines they were. Additionally, the proportion 318 
of mutations with monotonic frequency 319 
gradients (i.e., allelic clines) underlying local 320 
adaptation varied across the simulated 321 
datasets (Lotterhos, 2023), which may also 322 
affect offset performance. These simulations 323 
also presented demographic scenarios in 324 
which selection was confounded with genetic 325 
drift or population genetic structure. 326 
 For each simulation, ten individuals were 327 
randomly chosen per population for a total of 328 
1000 individuals. Individual genotypes were 329 
coded as counts of the derived allele. Alleles 330 
with global minor allele frequency (MAF) < 331 
0.01 were removed. Using all 100 populations, 332 
population-level derived allele frequencies and 333 
current environmental values were used as 334 
input to train offset methods.  335 
 In addition to the 2250 simulated Wright-336 
Fisher datasets (225 levels * 10 replicates), we 337 
also included a non-Wright-Fisher case with 338 
range expansion from three refugia and 339 
secondary contact (Lotterhos 2023). This 340 
simulation evolved variable degrees of 341 
admixture across the landscape. Six 342 
moderately polygenic environmental traits 343 
(ntraits = 6) were under selection from the 344 
environment. Environments were based on six 345 
weakly correlated environmental variables 346 
taken from Bioclim environmental measures 347 
of western Canada. The simulation evolved 348 
local adaptation at all six traits with 349 
unconstrained pleiotropy. For more details on 350 
simulations, see (Lotterhos, 2023).  351 

https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=26008116815890747&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:773abd07-b9ee-4e1a-aa0d-1ac26eb2e60d&options=%7B%22manual_text_override%22%3A%22Blanquart%20et%20al.%2C%202013%22%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=3949261477024095&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:c0f1de83-69a9-4564-b0ba-5cf548664a7f
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=8208528795903668&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:c0f1de83-69a9-4564-b0ba-5cf548664a7f
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2.2 | Evaluation of Offset Methods 352 

 We investigated the performance of 353 
five implementations of four genomic 354 
offset methods (Table 1): GFoffset, 355 
RDAoffset,, LFMM2offset, and RONA. 356 
While GFoffset, RDAoffset, and 357 
LFMM2offset can use multivariate 358 
environmental data to train models, 359 
RONA can only account for a single 360 
environment at one time (Table 1). 361 
Additionally, while GFoffset and RONA 362 
do not apply correction for population 363 
genetic structure, LFMM2offset does by 364 
default, and structure correction with 365 
RDAoffset is optional. We thus evaluate 366 
RDAoffset with (RDA-corrected) and 367 
without (RDA-uncorrected) population 368 
genetic structure correction (Table 1). 369 
For additional specifics related to the 370 
implementation of each offset method, 371 
see Supplemental Note S1.1-S1.4 and 372 
Fig. S1, Fig. S2, Fig. S3.  373 
 We varied construction of genomic 374 
offset training datasets for each 375 
replicate of the 1-, 2-, and 6-trait 376 
simulations by varying the marker set 377 
used in model training (Fig. 1A, Table 378 
2; see Q3 below). Each model was 379 
trained using genetic and 380 
environmental data from all 100 381 
populations. The environmental vari- 382 
ables used were only those imposing 383 
selection pressure. We predict offset 384 
from each model for each population to 385 
all 100 within-landscape common 386 
gardens from a full factorial in silico 387 
reciprocal transplant design (Fig. 1B). 388 
For each common garden, we quantified 389 
offset model performance as the rank 390 
correlation (Kendall’s !) between the 391 

population mean fitness (averaged over 392 
sampled individuals, Equation 3 in Lotterhos 393 
2023) and projected population offset (Fig. 394 
1C). Strong negative relationships between 395 
fitness and predicted offset indicate higher 396 
performance of the method (note y-axes of 397 
Kendall’s ! are inverted within figures to 398 
show more intuitive performance 399 
relationships, Fig. 1C-11). We refer to the 400 
preceding processing of data as the Adaptive 401 
Environment workflow (Fig. 1, Table 2). 402 
 To explore the impact of the choice of 403 
environmental variables used (see Q5 below), 404 
we used a workflow similar to the Adaptive 405 
Environment workflow, except instead of 406 
using only adaptive environmental variables, 407 
we used additional non-adaptive (i.e., 408 
nuisance) environmental variables in training 409 
and prediction (second row, Table 2). These 410 
nuisance variables had relatively weak 411 
correlation structure with adaptive 412 
environments and each other (Fig. S4). We 413 
refer to each of these nuisance levels by the 414 
number of traits under selection and the 415 
number of nuisance environments used (e.g., 416 
1-trait 3-nuisance). We refer to this workflow 417 
as the Nuisance Environment workflow . 418 
 Finally, to contrast with within- landscape 419 
evaluations, we explored predictive 420 
performance of Adaptive Environment offset 421 
models in novel environments that are beyond 422 
the range of values of those used in training 423 
(see Q6 below). In these novelty cases, we use 424 
11 common gardens, each progressively more 425 
distant from the average environment used in 426 
training (i.e., climate center) and evaluate 427 
performance in each garden. We refer to this 428 
workflow as the Climate Novelty workflow. 429 
See Supplemental Note S3 and Fig. S5 for 430 
details regarding the choice of environmental 431 
values for novelty scenarios. 432 
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2.3 | Study Questions 433 

Q1 - Which aspects of the past 434 
evolutionary history affect within-435 
landscape performance of offset 436 
methods? 437 

 For each offset method, we used a 438 
fixed-effects type II ANOVA model to 439 
test for significant differences in the 440 
performance from 2-trait Adaptive 441 
Environment models trained using all 442 
markers using the following factors: 443 
landscape (Estuary - Clines, Stepping 444 
Stone - Clines, Stepping Stone - 445 
Mountain), demography (five levels 446 
describing population size and 447 
migration patterns across the 448 
landscape), genic level of architecture 449 
(three levels from oligogenic to 450 
polygenic), presence or absence of 451 
pleiotropy, proportion of loci with clinal 452 
allele frequencies (as defined in 453 
Lotterhos, 2023), degree of local 454 
adaptation ("SA), and common garden 455 
ID. Specifically, 456 

     Yij = Li + Di + GLi + Pi + 457 
pcQTN,t,i + pcNeut,t,i + #cQTN,Env2,i + 458 
pcNeut,Env2,i + LAΔSA,i + Gj   459 

 (Eq. 1) 460 

where Yij is the within-landscape 461 
performance (Kendall’s !) of a single 462 
method for garden j in simulation i, 463 
with factors for landscape (L), 464 
demography (D), genic level (GL), 465 
presence of pleiotropy (P), proportion 466 
of QTN or neutral alleles with temp 467 
clines (respectively pcQTN,t,i and 468 
pcNeut,t,i), proportion of QTN or neutral 469 
alleles with Env2 clines (respectively 470 

#cQTN,Env2,i and pcNeut,Env2,i), degree of local 471 
adaptation (LAΔSA), and garden ID (G). The 472 
first four factors are illustrated in Fig. 1 of 473 
Lotterhos (2023). 474 

Q2 - How is offset performance affected by the 475 
proportion of clinal alleles in the data? (Q1B) 476 

 Clinal alleles (i.e., alleles with monotonic 477 
gradients in frequency across space) that 478 
covary with environmental clines could be 479 
weighted more heavily in offset models that 480 
emphasize loci whose allele frequencies 481 
explain significant variation across local 482 
environmental values. Using 2-trait models 483 
trained using all markers from the Adaptive 484 
Environment workflow, we used an ANOVA 485 
model (Eq. 2) to test the hypothesis that 486 
clinal alleles differentially impact model 487 
performance, independent from the other 488 
factors from Eq. 1: 489 

Yij = pcQTN,t,i + pcNeut,t,i + #cQTN,Env2,i + 490 
pcNeut,Env2,i 491 

(Eq. 2) 492 
The factors representing clinal alleles in Eq. 493 
2 are the same as those in Eq. 1. 494 

Q3 - Is method performance driven by causal 495 
loci or by genome-wide patterns of Isolation 496 
By Environment?  (Q2A) 497 

 For each offset method and workflow, we 498 
varied the set of input markers for 1-, 2- and 499 
6-trait simulations that were used in training 500 
to determine if performance of a method was 501 
driven by properties of the evolutionary forces 502 
shaping genotype-environment relationships: 503 
1) adaptive markers (i.e., QTNs with effects 504 
on at least one trait), 2) neutral markers 505 
(SNPs on linkage groups without QTNs), and 506 
3) all markers (union of adaptive and neutral 507 

https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=7521113778169478&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:c0f1de83-69a9-4564-b0ba-5cf548664a7f&options=%7B%22manual_text_override%22%3A%22Lotterhos%2C%202023%22%7D
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markers, as well as non-QTN markers 508 
on the same linkage groups as QTNs). 509 
Only loci that passed MAF filtering 510 
were included in marker sets. If offset 511 
performance is determined solely by 512 
adaptive signals in genetic data, offsets 513 
trained using adaptive markers should 514 
have better performance than all or 515 
neutral markers, and all markers should 516 
have better performance than neutral 517 
markers.  518 
 If the marker set has little impact on 519 
offset performance, this could indicate 520 
that offset methods are giving weight to 521 
genome-wide signals present in the 522 
data. Previously, some (e.g., Lachmuth, 523 
Capblancq, Keller, et al., 2023; Lind et 524 
al., 2024) have postulated that this 525 
signal may be related to isolation by 526 
environment ((IBE, i.e., when genetic 527 
and environmental distances are 528 
positively correlated, independent of 529 
geographic distance; Wang & 530 
Bradburd, 2014). 531 
 If IBE is driving patterns of offset 532 
performance, we expect 1) performance 533 
to be similar between offsets estimated 534 
using adaptive markers and those 535 
estimated using neutral markers; 2) a 536 
greater proportion of variation in 537 
performance to be explained by pcNeut 538 
than pcQTN (from Q2); 3) a strong, 539 
positive relationship between 540 
performance and LAΔSA; and 4) the 541 
difference in IBE between two marker 542 
sets to be positively correlated with the 543 
difference in performance of two models 544 
trained with those markers. We 545 
measure IBE as the rank correlation 546 
(Spearman’s $) between population 547 
pairwise FST (Weir & Cockerham, 1984) 548 

and Euclidean climate distance of adaptive 549 
environmental variables. 550 

Q4 - What is the variation of model 551 
performance across the landscape?  (Q3a) 552 

 Within a landscape, offset methods may 553 
not have high predictive performance at every 554 
site or every environment. Understanding 555 
variabil- ity in the predictive performance of 556 
offset models across the landscape is 557 
particularly relevant when offsets are used for 558 
restoration or assisted gene flow initiatives 559 
(i.e., ranking sources for a given site). If 560 
predictive performance is variable across the 561 
landscape, this may limit the usefulness of 562 
genomic offsets for such purposes even if 563 
model performance is validated in one 564 
common garden. Using the Adaptive 565 
Environment workflow, we visualized 566 
variation of 1- and 2-trait  within-landscape 567 
performance with boxplots for each common 568 
garden for each method and landscape. To 569 
understand if variation in predictive 570 
performance was a function of the model 571 
quality, we investigated the relationship 572 
between a model’s performance variability 573 
(i.e., standard deviation across 100 common 574 
gardens) and the model’s median 575 
performance. 576 

Q5 - How does the addition of non-adaptive 577 
nuisance environments in training affect 578 
performance? (Q2B) 579 

 In practice, the environments imposing 580 
selection are rarely known a priori. 581 
Additionally, the inclusion of environmental 582 
measures that are not correlated with the 583 
main axes of selection may reduce model 584 
performance compared to models trained 585 
using only causal environments. To 586 

https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=11922483246419635&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:aab7b8db-d2ae-4219-a4a4-bdcf8bd2d8cf,ebbd69cb-57f0-4ffb-b5af-46d0637d5128:9ac353b7-75be-4a6f-b01b-73bf453eeb36&options=%7B%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3Aaab7b8db-d2ae-4219-a4a4-bdcf8bd2d8cf%22%3A%7B%22prefix%22%3A%22e.g.%2C%20%22%7D%7D%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=11922483246419635&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:aab7b8db-d2ae-4219-a4a4-bdcf8bd2d8cf,ebbd69cb-57f0-4ffb-b5af-46d0637d5128:9ac353b7-75be-4a6f-b01b-73bf453eeb36&options=%7B%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3Aaab7b8db-d2ae-4219-a4a4-bdcf8bd2d8cf%22%3A%7B%22prefix%22%3A%22e.g.%2C%20%22%7D%7D%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=11922483246419635&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:aab7b8db-d2ae-4219-a4a4-bdcf8bd2d8cf,ebbd69cb-57f0-4ffb-b5af-46d0637d5128:9ac353b7-75be-4a6f-b01b-73bf453eeb36&options=%7B%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3Aaab7b8db-d2ae-4219-a4a4-bdcf8bd2d8cf%22%3A%7B%22prefix%22%3A%22e.g.%2C%20%22%7D%7D%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=9673730701491489&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:811506ed-a087-4f8d-8da1-2dd4acda757d&options=%7B%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3A811506ed-a087-4f8d-8da1-2dd4acda757d%22%3A%7B%22prefix%22%3A%22(IBE%2C%20i.e.%2C%20when%20genetic%20and%20environmental%20distances%20are%20positively%20correlated%2C%20independent%20of%20geographic%20distance%3B%20%22%7D%7D%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=9673730701491489&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:811506ed-a087-4f8d-8da1-2dd4acda757d&options=%7B%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3A811506ed-a087-4f8d-8da1-2dd4acda757d%22%3A%7B%22prefix%22%3A%22(IBE%2C%20i.e.%2C%20when%20genetic%20and%20environmental%20distances%20are%20positively%20correlated%2C%20independent%20of%20geographic%20distance%3B%20%22%7D%7D%7D
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investigate the sensitivity of offset 587 
methods to environmental input we 588 
compared Adaptive Environment 589 
workflow models from 1-, 2-, and 6-trait 590 
simulations – where only the adaptive 591 
environment(s) are used in training (0-592 
nuisance) – to models from the 593 
Nuisance Environment workflow 594 
trained with the same data but with the 595 
addition of nuisance environments (N-596 
nuisance, where N > 0; Table 2). 597 
 We use nuisance environmental 598 
variables from Lotterhos (2023) that 599 
were real BioClim variables (TSsd, 600 
PSsd, and ISO) taken from British 601 
Columbia and Alberta, Canada, which 602 
have minimal correlation with causal 603 
environments and each other (Fig. S4). 604 
These three nuisance environments 605 
differ from previous implementations of 606 
such variables (Láurson et al. 2022) in 607 
that they are spatially autocorrelated 608 
whereas nuisance environments in 609 
Láruson et al. (2022) were not. For 1-610 
trait scenarios, Env2 was also used as a 611 
nuisance environmental variable. 612 
 If offset methods are unaffected by 613 
the addition of nuisance environmental 614 
variables, performance should not differ 615 
between 0-nuisance and N-nuisance 616 
implementations.  Finally, in 617 
empirical settings the set of adaptive 618 
environments are not known a priori. 619 
We also explored whether GF would 620 
rank adaptive environments higher 621 
than nuisance environments using 622 
weighted importance output from GF. 623 

Q6 - How well do offset models extrapolate to 624 
novel environments outside the range of 625 
environments used in training? (Q2C) 626 

 Even if offset methods have high within-627 
landscape performance, this does not directly 628 
address situations where future 629 
environmental conditions are vastly different 630 
from the environmental conditions used for 631 
training (i.e., novel environments). If 632 
performance decreases with increasing 633 
environmental novelty relative to training 634 
data, this raises questions about the utility of 635 
genomic offsets for predicting 1) relative in 636 
situ vulnerability of populations to future 637 
climate change, and 2) the relative suitability 638 
of populations to restoration sites that differ 639 
drastically than those used in training. 640 
 To understand if offset performance 641 
degrades with environmental novelty relative 642 
to training data, we predicted offset to 10 643 
novel environmental scenarios for the 1-, 2-, 644 
and 6-trait simulations using the Climate 645 
Novelty workflow (Table 2). The novel 646 
environmental scenarios were a set of common 647 
garden environments, zE, extending outward 648 
from the training populations and exceeding 649 
values observed on the landscape for all 650 
adaptive environmental variables 651 
(Supplemental Note S3). We represent these 652 
scenarios as standard deviations from the 653 
center of environmental values used in 654 
training: zE ∈ {1.72, 2.35, 2.74, 3.13, 3.53, 655 
3.92, 4.31, 4.70, 5.09, 5.48, 5.88}. Fitness in 656 
novel environments was estimated assuming 657 
that the phenotypic optimum continues to 658 
have a linear relationship with the 659 
environmental variable (Equation 3 in 660 
Lotterhos 2023). 661 
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3 | Results 662 

Q1 - Which aspects of the past 663 
evolutionary history affect within-664 
landscape performance of offset 665 
methods? 666 

 The ANOVA model (Eq. 1) 667 
indicated that the degree of local 668 
adaptation of the metapopulation 669 
(LAΔSA) was the primary factor 670 
influencing offset performance, followed 671 
by common garden location, 672 
demography, and landscape (Table S1; 673 
Fig. S6). Within the simulations, LAΔSA 674 
was impacted by pleiotropy, the 675 
relative strength of selection, and 676 
landscape, (Fig. S7; see also Figs. S2A, 677 
S2B in Lotterhos, 2023), so there may 678 
be some confounding among these 679 
factors. 680 
 In line with the ANOVA model, the 681 
performance of specific offset methods 682 
generally increased with increasing 683 
LAΔSA (Fig. 2), but there were some 684 
interesting differences among methods. 685 
For instance, GFoffset, LFFM2offset, 686 
RDA-uncorrected, and RONAtemp all 687 
improved as LAΔSA increased, while 688 
RDA-corrected and RONAEnv2 showed 689 
relatively weaker relationships. 690 
 Across landscapes, offset methods 691 
generally had higher performance in 692 
Stepping Stone - Clines landscapes than 693 
Stepping Stone - Mountain landscapes 694 
(Fig. 2B) despite similar levels of LAΔSA 695 
(Fig. 2A). Offset methods also generally 696 
performed better in the two Stepping 697 
Stone landscapes than the Estuary - 698 
Clines landscape (Fig. 2B). However, 699 
there were some interactions between 700 

method and landscape (Fig. 2C). For 701 
instance, RDA-corrected performed better in 702 
the Estuary - Clines compared to the two 703 
Stepping Stones landscapes, while the RDA-704 
uncorrected showed the opposite pattern: 705 
performance was higher in the two Stepping 706 
Stones landscapes compared to Estuary - 707 
Clines. 708 
 The performance of methods was similar 709 
across genic levels but increased slightly as 710 
the number of QTNs underlying adaptation 711 
became more polygenic (Fig. S8). 712 
Additionally, while demography primarily 713 
influenced population differentiation across 714 
the landscape with little impact on LAΔSA 715 
within simulations (Table S2 in Lotterhos 716 
2023), migration breaks between populations 717 
and latitudinal clines in population size 718 
generally decreased offset performance for 719 
LFMM2offset, GFoffset, and RDA- uncorrected 720 
(Fig. S9). 721 

Q2 - How is offset performance affected by the 722 
proportion of clinal alleles in the data? (Q1B) 723 

 The sum of squares from Eq. 1 indicated 724 
that the proportion of clinal alleles did not 725 
account for meaningful variation in offset 726 
performance (Table S1). Even so, results from 727 
an ANOVA model with just the proportion of 728 
clinal loci as explanatory variables (Eq. 2) 729 
indicated that #cNeut accounted for 4.14-9.65 730 
times the variation than did #cQTN for GFoffset, 731 
LFMM2offset, and RDA-corrected. For GFoffset 732 
and RDA-uncorrected, #cNeut,Env2 accounted 733 
for >16% of the sum of squares (Table S2, 734 
Fig. S10). 735 
 Overall, relationships between 736 
performance and #cNeut (second column, Fig. 737 
S11) had stronger relationships than between 738 
performance and #cQTN (first column, Fig. 739 

https://docs.google.com/document/d/18gGaVeaMDfgD88vAfFWclU4h_jVNiP4JuXtxsOtgNqo/edit#bookmark=id.qufjzu350z2x
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S11). However, sometimes performance 740 
increased with #cNeut and sometimes it 741 
decreased, depending on the method 742 
(Fig. S11), indicating that each method 743 
is differentially sensitive to clinal alleles 744 
in the data. Ultimately, strong 745 
population genetic structure along 746 
environmental clines in 2-trait 747 
simulations (Fig. S12) drove 748 
relationships with pcNeut (Fig. S13) 749 
which in turn drove relationships with 750 
performance (Fig. S14, Fig. S11). 751 

Q3 - Is method performance driven by 752 
causal loci or by genome-wide patterns 753 
of Isolation-By-Environment? (Q2A) 754 

 Overall, 1- and 2-trait Adaptive 755 
Environment models had relatively 756 
similar performance among marker sets. 757 
For instance, models trained using all or 758 
neutral markers had similar 759 
performance while models trained using 760 
adaptive markers performed slightly 761 
higher than the other sets. The median 762 
increase in performance from adaptive 763 
compared to all or neutral models was 764 
less than 3%. In total, using adaptive 765 
markers outperformed 68% of models 766 
using neutral markers and 67% of 767 
models using all markers, while 74% of 768 
models using all markers outperformed 769 
neutral models (Fig. 3A-C). For RDA-770 
corrected the neutral markers 771 
performed slightly better than either 772 
adaptive or all markers in 2-trait 773 
evaluations (Fig. 3E). Adaptive 774 
markers from 6-trait evaluations 775 
provided varied performance 776 
advantages across methods (Fig. 4). 777 

 The adaptive marker sets had relatively 778 
elevated levels of IBE compared to sets of 779 
neutral or all markers in 1- and 2-trait 780 
simulations, but levels of IBE were 781 
nonetheless quite similar between marker sets 782 
(Fig. S15). Consequently, performance of 783 
models trained with adaptive markers 784 
generally had stronger relationships with IBE 785 
than LAΔSA but this was not the case for 786 
models trained with either all or neutral 787 
markers (Fig. S16).  788 
 Intriguingly, levels of IBE found within a 789 
landscape (Fig. S17A) did not correspond to 790 
the degree of LAΔSA that developed (Fig. 791 
S17B). Even so, while IBE was generally 792 
unrelated to LAΔSA across all simulations, 793 
there were generally positive relationships 794 
between IBE and LAΔSA when controlling for 795 
the number of traits and differences in 796 
strengths of selection (Fig. S18). As such, IBE 797 
from all markers explained very little 798 
variation in performance when added as a 799 
factor to the ANOVA model from Eq. 1 (SC 800 
02.02.01), but accounted for some variation in 801 
ANOVA models with only LAΔSA and IBE as 802 
explanatory variables (0-34% for IBE vs 0-803 
74% for LAΔSA; Table S3). Except for RONA, 804 
the differences in performance between two 805 
models trained with different marker sets was 806 
generally unrelated to the differences in IBE 807 
between the two marker sets used to train the 808 
models (Fig. S19).  809 
 Together these results indicate that while 810 
higher degrees of local adaptation may lead to 811 
increased levels of IBE in the genome, the 812 
signal of IBE of input markers generally has 813 
minimal and varied impact on performance 814 
differences for the scenarios evaluated here. 815 
Alternatively, the levels of IBE present in the 816 
simulated genomes may exceed a minimum 817 
threshold of IBE, beyond which differences in 818 
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performance between marker sets are 819 
minimized. 820 

Q4 - What is the variation of model 821 
performance across the landscape? 822 
(Q3a) 823 

 All 1- and 2-trait models exhibited 824 
variation in the predictive performance 825 
across gardens within a landscape, from 826 
essentially no predictive performance to 827 
very high predictive performance (Fig. 828 
S20, Fig. S21, Fig. S22, Fig. S23). 829 
Variation in performance was also 830 
observed for 6-trait models (Fig. 4).  831 
 While there was variability in 832 
predictive performance of 1- and 2-trait 833 
models within each landscape, in many 834 
cases the best performing models had 835 
the lowest levels of performance 836 
variation (Figs. S24, S25,  S26). 837 
Ultimately we found no strong indicator 838 
for predicting when a model will be 839 
highly variable. Indeed, while 840 
performance generally increased with 841 
LAΔSA (Fig. 2), variability in 842 
performance was not strongly related to 843 
the variability in deme-level LA on the 844 
landscape (Figs. S27, S28, S29). Despite 845 
LAΔSA driving performance more 846 
generally (from Q1), this indicates that 847 
variation in model performance across 848 
the landscape is not strongly driven by 849 
metapopulation levels of, nor deme-850 
level variation in, LA. 851 

Q5 - How does the addition of non-852 
adaptive nuisance environments in 853 
training affect performance? (Q2B) 854 

 Training offset models with the 855 
addition of non-adaptive nuisance 856 

environmental variables generally reduced 857 
offset method performance (Fig. 5). This 858 
decline was most dramatic for offset trained 859 
on 1-trait simulations (Fig. 5A) compared to 860 
the decline observed for 2-trait (Fig. 5B) and 861 
6-trait (Fig. 5C) simulations. The only 862 
instances for which median performance did 863 
not decrease monotonically with nuisance 864 
level were for 2-trait simulations evaluated 865 
with GFoffset (Fig. S30).  866 
 Overall, landscape had the most influence 867 
over performance differences due to non-868 
adaptive nuisance environments (Fig. S30), 869 
whereas there was little difference across 870 
other simulation parameters (not shown 871 
except in SC 02.02.06). Even so, adaptive 872 
markers seemed to provide some advantages 873 
in the presence of nuisance environments, 874 
particularly for 1-trait datasets where the 875 
advantages were more substantial compared 876 
to 2-trait datasets (Fig. S31, Fig. S32). 877 
 In some cases, the rankings of weighted 878 
environmental importance output from GF 879 
ranked nuisance variables higher than at least 880 
one adaptive environment (Table S4). Across 881 
1- and 2-trait N-nuisance models trained with 882 
all markers, GF incorrectly ranked 883 
environmental drivers in 26.9% (133/495) of 884 
the cases. Rankings improved somewhat for 885 
models trained with adaptive markers, 886 
incorrectly ranking environmental variables in 887 
20.6% (102/495) of the cases (Table S4). 888 

Q6 - How well do offset models extrapolate to 889 
novel environments outside the range of 890 
environments used in training? (Q2C) 891 

 The datasets that had the greatest within-892 
landscape performance (i.e., those with higher 893 
levels of LAΔSA) were also those that 894 
experienced the steepest decline in 895 
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performance with increasing climate 896 
novelty (red shade, Fig. 6). 897 
Importantly, declines in performance 898 
for datasets with greater LAΔSA were 899 
not due to instances where all 900 
populations had zero fitness (and thus 901 
performance was undefined and 902 
manually set to 0; Supplemental Note 903 
S4, Fig. S33). Despite little change in 904 
the median performance for datasets 905 
with low levels of LA, most performance 906 
scores from these datasets were below 907 
Kendall’s !=0.5, and therefore had 908 
little predictive value in novelty 909 
scenarios. 910 
 Advantages of adaptive marker sets 911 
were much less prevalent across 912 
methods for Climate Novelty scenario 913 
performance than either Adaptive 914 
Environment or Nuisance Environment 915 
scenarios  (Fig. S34). 916 

 4 | Discussion 917 

 Solutions are needed to mitigate the 918 
negative impacts of global change on 919 
biodiversity. In the last decade, 920 
genomic offset methods have been 921 
identified as a complement to other 922 
ecological forecasting models because 923 
they incorporate intraspecific variation 924 
(Keller & Fitzpatrick, 2015; Capblancq 925 
et al., 2020; Rellstab et al., 2021). Our 926 
evaluations show that offset methods 927 
are differentially impacted by both the 928 
evolutionary history of sampled 929 
populations as well as the decisions 930 
made during model training. Our 931 
analyses emphasize the importance of 932 
sampling locally adapted populations, 933 

identifying the drivers underlying 934 
environmental selection pressures a priori, 935 
and restricting offset projections to climates 936 
similar to those used in training. Below, we 937 
discuss the implications of these findings 938 
towards restoration, conservation, and the 939 
management of biodiversity. 940 

4.1 | The importance of local adaptation 941 

 A basic assumption of genomic offset 942 
methods is that the sampled populations are 943 
adapted to their local environment (Rellstab 944 
et al., 2016, 2021), but this assumption has 945 
not been formally tested. Our analyses show 946 
that indeed the degree of local adaptation 947 
(LAΔSA) is one of the primary factors that 948 
determine model performance for most 949 
methods. A value of  LAΔSA ~ 0.5 indicates 950 
that fitness in demes is on average 50% higher 951 
in sympatry than allopatry. Values of  LAΔSA 952 
represent the average deme-level magnitudes 953 
of LAΔHA and LAΔLF across the 954 
metapopulation (Blanquart et al., 2013). 955 
Previous metaanalyses of studies measuring 956 
local adaptation of natural populations have 957 
used different measures of LA from the ones 958 
we calculate here, but do show that some 959 
species evolve large fitness differences among 960 
populations (Hereford, 2009; Leimu & 961 
Fischer, 2008). Given the prevalence of LA 962 
found previously (Hereford, 2009; Leimu & 963 
Fisher, 2010), we may therefore expect some 964 
genomic offset methods to do reasonably well 965 
when local adaptation in the metapopulation 966 
is high (i.e., when LAΔSA > 0.5). 967 

4.2 | The importance of the signals 968 
within genomic marker sets 969 

 Because of the assumption that locally 970 
adapted populations will be necessary for 971 

https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=3314451578464539&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:c3d42cf9-d3d4-494b-8d76-ca3a686a9315,ebbd69cb-57f0-4ffb-b5af-46d0637d5128:d1753d96-6353-4def-bf3b-68e3c61d2550
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=3314451578464539&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:c3d42cf9-d3d4-494b-8d76-ca3a686a9315,ebbd69cb-57f0-4ffb-b5af-46d0637d5128:d1753d96-6353-4def-bf3b-68e3c61d2550
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https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=5031610377266155&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:af78508e-d300-4d99-a129-fb8cc6c1ae8d,ebbd69cb-57f0-4ffb-b5af-46d0637d5128:698f8675-b902-47c2-929e-8ca89e360f91
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=5031610377266155&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:af78508e-d300-4d99-a129-fb8cc6c1ae8d,ebbd69cb-57f0-4ffb-b5af-46d0637d5128:698f8675-b902-47c2-929e-8ca89e360f91
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satisfactory model performance, initial 972 
implementations of genomic offset 973 
models focussed on putatively adaptive 974 
markers where this signal may be 975 
strongest (Keller & Fitzpatrick, 2015; 976 
Rellstab et al., 2016). More recently, 977 
investigators have varied the set of 978 
markers used to train models but have 979 
found little influence on performance 980 
(Fitzpatrick et al., 2021; Lachmuth, 981 
Capblancq, Keller, et al., 2023; Láruson 982 
et al., 2022; Lind et al., 2024). Our 983 
results are similar to previous 984 
investigations, finding that the adaptive 985 
marker sets provide minimal advantage 986 
over all or neutral marker sets, but not 987 
universally or by great margins. 988 
 One hypothesis put forth as to why 989 
adaptive marker sets perform similarly 990 
to all markers is that genome-wide data 991 
captures sufficient signatures of IBE 992 
(Lachmuth, Capblancq, Keller, et al., 993 
2023; Lind et al., 2024). Our analysis 994 
found weak positive relationships 995 
between performance and levels of IBE 996 
within marker sets. Even so, and except 997 
for RONA, there were no universal 998 
relationships within methods between 999 
the difference in IBE of marker sets and 1000 
the difference in performance of the 1001 
models trained with these markers. 1002 
 While we found little impact of 1003 
levels of IBE on overall performance, 1004 
the way in which we measured IBE may 1005 
have masked causative relationships. 1006 
For instance, in our measure of IBE we 1007 
correlated environmental distance with 1008 
pairwise FST. In doing so, our measure 1009 
of IBE distills genetic distance down to 1010 
a single value from a large number of 1011 
loci, and gives less weight to loci with 1012 

rare alleles. In future studies, creating a 1013 
marker set by ranking loci by single-locus 1014 
measures of IBE offers another opportunity to 1015 
understand the impact of IBE on 1016 
performance. Such marker sets could be used 1017 
to compare to performance from putatively 1018 
adaptive marker sets or marker sets composed 1019 
of all or random loci. Empirical datasets will 1020 
also be able to specifically address 1021 
geographical distances while quantifying IBE 1022 
(e.g., Bradburd et al., 2013).  1023 
 While measures of IBE are one signal 1024 
remaining to be explored in future analyses, 1025 
the proportion of clinal neutral loci within 1026 
marker sets was shown to impact 1027 
performance, sometimes being positively 1028 
related to performance and sometimes 1029 
negatively depending on the context. These 1030 
and other signals within data that could 1031 
improve or mislead offset models also warrant 1032 
further investigation. 1033 

4.3 | The importance of adaptive 1034 
environmental variables 1035 

 In empirical settings, the environ- mental 1036 
drivers of local adaptation are rarely known a 1037 
priori. Even so, our results emphasize the 1038 
importance of identifying these variables 1039 
before training offset models, as there were 1040 
often declines in performance between models 1041 
trained using only adaptive environmental 1042 
variables (0-nuisance) and those trained using 1043 
additional non-adaptive nuisance 1044 
environmental variables (N-nuisance). 1045 
 The importance of identifying these 1046 
selective environments may be particularly 1047 
germane to two general empirical scenarios. In 1048 
the first empirical scenario,, sparsely sampling 1049 
an environmentally heterogeneous range may 1050 
enrich genetic signals (e.g., coincident 1051 
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population structure) most correlated 1052 
to environmental variables that 1053 
maintain a gradient across this extent, 1054 
and miss signals relevant to more local 1055 
scales. In the second empirical scenario, 1056 
identifying the environmental variables 1057 
underlying selection is particularly 1058 
important when a specific genomic 1059 
offset method is ill-suited to 1060 
differentiate importance among input 1061 
variables. For instance, RDA (and 1062 
therefore RDAoffset) assumes that the 1063 
environmental variables used to build 1064 
models are not collinear; (as 1065 
implemented here; Capblancq & 1066 
Forester, 2021; Legendre & Legendre, 1067 
2012). Because of this, empirical 1068 
datasets must be limited to a subset of 1069 
available environmental measures. The 1070 
process of excluding environmental 1071 
variables in this way may omit signals 1072 
of adaptive drivers (particularly when 1073 
true drivers are not well measured), or 1074 
perhaps incorporate environmental 1075 
variables that do not coincide with 1076 
drivers of selection. In these cases, 1077 
performance is likely to decline. As 1078 
such, this may indicate that methods 1079 
such as RDAoffset are likely to perform 1080 
worse in, or less uniformly across, 1081 
realistic empirical settings than what 1082 
our current findings suggest. 1083 
 On the other hand, users of GF may 1084 
be tempted to include a large number 1085 
of environmental variables in training, 1086 
hoping that GF can accurately 1087 
attribute the correct environmental 1088 
variation to adaptive genetic structure. 1089 
Our results show that it is not 1090 
necessarily the case that GF will give 1091 
the highest importance values to the 1092 

true adaptive environmental variables. 1093 
Indeed, weighted feature importance scores 1094 
from GF models still incorrectly ranked the 1095 
adaptive environments below neutral 1096 
environments in 20%-27% of the datasets, 1097 
depending on which marker set was used. 1098 
These importance values ultimately affect the 1099 
model predictions. Including all available 1100 
environmental variables may therefore 1101 
negatively impact GFoffset performance, and 1102 
could have weakened overall performance in 1103 
previous empirical evaluations that used a 1104 
large number of environmental measures in 1105 
training (e.g., Lind et al., 2024). 1106 
 There are some differences between the 1107 
nuisance environmental variables 1108 
implemented here and those that have been 1109 
implemented previously. For instance, 1110 
Láruson et al. (2022) created nuisance 1111 
variables by randomly sampling a 1112 
multivariate normal distribution. In contrast 1113 
to findings here, Láruson et al. (2022) found 1114 
that model performance was relatively 1115 
unaffected with the addition of nuisance 1116 
variables. The minimal influence of nuisance 1117 
variables on performance found by Láruson et 1118 
al. (2022) may differ from the performance 1119 
declines reported here because the nuisance 1120 
variables we used were  spatially 1121 
autocorrelated, while those from Láruson et 1122 
al. (2022) were not. Inclusion of nuisance 1123 
variables that are spatially autocorrelated 1124 
may mislead offset models more generally 1125 
than variables with little spatial 1126 
autocorrelation because of the spurious 1127 
relationship between environmental structure 1128 
and genetic structure. 1129 
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4.4 | The effect of environmental 1130 
novelty 1131 

 While within-landscape perfor- 1132 
mance generally increased with LAΔSA, 1133 
the datasets with the greatest levels of 1134 
LAΔSA were also the datasets where 1135 
performance declined most readily with 1136 
climate novelty. This occurred because 1137 
locally adapted metapopulations were 1138 
under strong selection to be fine-tuned 1139 
to their environment, and as a result 1140 
most individuals suffered severe fitness 1141 
declines with environmental change. In 1142 
contrast, less locally adapted 1143 
metapopulations were under weaker 1144 
selection, and suffered less steep fitness 1145 
declines with environmental change. 1146 
This result highlights an interesting 1147 
paradox: offset methods that have the 1148 
highest performance in common garden 1149 
transplants under current climates 1150 
(because of strong local adaptation) 1151 
may have the lowest performance in 1152 
predicting “genomic vulnerability” as 1153 
the range of climate variables become 1154 
more novel compared to the ranges used 1155 
in training the model. 1156 
 Thus, genomic offset models are 1157 
likely ill-suited for estimating fitness 1158 
ranks of populations in environments 1159 
that differ drastically from those used 1160 
to train the models themselves. This is 1161 
particularly relevant for applications of 1162 
offset methods that attempt to estimate 1163 
in situ risk of climate change to years or 1164 
climate scenarios where the 1165 
environment is expected to be 1166 
increasingly novel. While climate 1167 
novelty is often measured with respect 1168 
to historical variability (e.g., Lotterhos 1169 

et al., 2021; Mahony et al., 2017; Williams et 1170 
al., 2007), indices of local climate change 1171 
indicate that local environments in terrestrial 1172 
systems could experience change in excess of 1173 
three standard deviations relative to historic 1174 
values (Williams et al., 2007). Similar indices 1175 
in marine systems indicate potential for even 1176 
greater novelty (Lotterhos et al., 2021). We 1177 
observed performance declines below the 1178 
analogous zE=3.13 Climate Novelty scenario, 1179 
indicating offset predictions will likely be 1180 
inaccurate in many real-world climate change 1181 
predictions. These issues are also germane to 1182 
measures derived from offset values 1183 
(Gougherty et al., 2021; Lachmuth, 1184 
Capblancq, Keller, et al., 2023; Lachmuth, 1185 
Capblancq, Prakash, et al., 2023), which 1186 
currently do not consider the degree of 1187 
climate novelty in the prediction (but see 1188 
DeSaix et al., 2022). 1189 
 Our results present a best-case scenario for 1190 
predicting performance in novel 1191 
environments, as in many cases there will be 1192 
biological reasons as to why climate-fitness 1193 
relationships will differ in future 1194 
environments from relationships measured 1195 
within the contemporary climate space (see 1196 
Fig. 5 in Capblancq et al., 2020). For the 1197 
simulations here, the relationship between 1198 
contemporary and novel environments with 1199 
fitness was the same. 1200 

4.5 | Genomic offsets in practice 1201 

 Our evaluations show that genomic offset 1202 
methods hold promise for predicting 1203 
maladaptation to environmental change 1204 
within a historical baseline, in 1205 
metapopulations that evolve strong local 1206 
adaptation. However, our analyses also 1207 
emphasize the limits of these methods in some 1208 
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systems or scenarios. In practice, 1209 
species that are locally adapted to 1210 
measurable environmental variables 1211 
will be best suited for offset methods 1212 
when predicting the relative 1213 
performance of populations in a 1214 
contemporary common garden, but 1215 
paradoxically these species may be least 1216 
suited to using these methods to predict 1217 
their vulnerability to novel climates.  1218 
 Together, these results indicate that 1219 
some genomic offset methods may be 1220 
suited to guide initiatives such as near-1221 
term assisted gene flow, where targeted 1222 
restoration sites within a species range 1223 
have climates that are similar to those 1224 
used to train offset models. Even so, our 1225 
results also show that the performance 1226 
of these methods are often variable 1227 
across a landscape,  indicating that high 1228 
performance at one site does not mean 1229 
the offset model will perform well at 1230 
another. While genomic offset methods 1231 

may be suitable for assisted gene flow 1232 
initiatives, they may be less suited for assisted 1233 
migration programs where populations are 1234 
moved outside of their native range and 1235 
environments differ from training data. 1236 
 Before genomic offsets can be incorporated 1237 
into management plans, considerable thought 1238 
must be put into the sensitivity of model 1239 
outcomes from input data (Lind et al., 2024), 1240 
the uncertainty inherent in environmental or 1241 
climate forecasts (Lachmuth, Capblancq, 1242 
Keller, et al., 2023), as well as the degree of 1243 
novelty of future climates (DeSaix et al., 2022, 1244 
this study). While accurate predictions are 1245 
limited for novel climates of the future, these 1246 
offset methods could still be used to guide 1247 
management in the intervening time in a 1248 
stepwise manner where experiments can be 1249 
used to validate model performance in 1250 
practice. Using simulations tailored to the life 1251 
history of target species also presents a 1252 
promising avenue to understand limitations of 1253 
these methods for specific management cases. 1254 
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Method abbr. Multivariate? Structure correction? 

Gradient Forests1 GFoffset Yes No 

Redundancy Analysis2 with population 
structure correction  RDA-corrected Yes Yes, with axes 

loadings from PCA* 

Redundancy Analysis2 without 
population structure correction  RDA-uncorrected Yes No 

Latent factor mixed model from 
Landscape and Ecological Association 
Studies R package3

 

LFMM2offset Yes Yes, with latent 
factors 

Risk Of Non-Adaptedness4  RONA No No 

* principal component analysis 

Table 1    Genomic offset methods used for evaluation. Genomic offset methods differ in their 
capability to use multivariate environmental data in training as well as whether a correction for 
population genetic structure is applied. Superscripts apply to the following reference citations: 1 - 
Fitzpatrick & Keller, 2015; 2 - Capblancq & Forester, 2021; 3 - Gain & François, 2021; 4 - Rellstab et 
al., 2016.  
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Table 2    Workflows used to process simulation data for the evaluation of genomic offset methods. 
Numbers given in column names refer to locations in schematic of Fig. 1. The Adaptive Environment 
workflow processes all population data from 1- and 2-trait (example shown in Fig. 1) as well as 6-
trait simulations using only adaptive environmental variables in training, and evaluates performance 
in each garden on the metapopulation landscape. The Nuisance Environment workflow processes 
1-, 2-, and 6-trait simulations similarly to the Adaptive Environment workflow, except in addition to 
adaptive environmental variables used in training, non-adaptive (i.e., nuisance) environmental 
variables are also used - each bracketed set of environmental variables indicate a distinct nuisance 
level (e.g., “1-trait 1-nuisance” = [AE1-trait environments + Env2] and “1-trait 4-nuisance” = [AE1-trait 
environments + Env2 + ISO + PSsd + TSsd]). The Climate Novelty workflow uses trained models from 
the Adaptive Environment workflow (Fig. 1A-5) and evaluates offset in 11 novel environments 
relative to the range of environments used in training. See Supplemental Note S3 for details 
regarding the choice of Climate Novelty environmental values and visualizations of climate data in 
principal component space. See Supplemental Notes S1-S2 for descriptions of coding workflows. 
Counts of evaluations were tabulated in SC 02.10.01. 
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Figure 1    Analysis of 1-, 2-, and 6-trait simulations included three main phases: A) model training, 
B) model prediction, and C) evaluation of models. The Adaptive Environment workflow is shown as 
an example of the processing of 1- and 2-trait simulation data for genomic offset evaluation. In total, 
three general workflows are used to evaluate genomic offset methods (Table 2). Subpanels of this 
schematic are numbered for referencing in Table 2 and the main text.  
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(Fig. 2) 
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(Fig. 2 continued) 

 

Figure 2    Predictive performance of genomic offset models (y-axes) is driven by the degree of local 
adaptation (A) and the spatial patterns of adaptive environments across the landscape (B, C). For 
each model, a median value from performance scores from 100 common gardens is shown for A 
and B; C shows scores across all common gardens for each model (note that y-axes are inverted, as 
more negative values have higher performance). Data included in these figures was processed 
through the Adaptive Environment workflow but only includes models trained using 2-trait 
simulations and all loci. Code to create (A) and (B) can be found in SC 02.02.02; code to create (C) 
can be found in SC 02.02.01.  
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(Fig. 3) 
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Figure 3    Comparison of marker choice across genomic offset methods for 1- and 2-trait 
simulations. A-C are scatterplots of pairwise comparisons of performance between marker sets 
(histograms in each margin) from both 1- and 2-trait models where density of points is indicated by 
color in legend (note color scale is different for each figure to accentuate patterns in data). D-E are 
boxplots from the same data in A-C separated by individual traits. Data included in these figures is 
from all 1- and 2-trait models from the Adaptive Environment workflow. Code to create these figures 
can be found in SC 02.02.03. 
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Figure 4    Comparison of marker choice across genomic offset methods for the 6-trait simulation. 
A-C are scatterplots of pairwise comparisons of performance between marker sets (RONA is not 
shown, except in SN 02.05.10). D are boxplots from the same data in A-C (RONA6-traits is the 
combined performance across all six environmental models). Data included in this figure is from the 
6-trait models processed through the Adaptive Environment workflow. Note there is only one 6-trait 
replicate, and variation within figures represents the performance across 100 common gardens for 
each method. Code to create these figures can be found in SN 02.05.10.  



Lind, Lotterhos, and the limits of genomic offsets 

10 

(Fig. 5) 
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Figure 5   Effect of non-adaptive nuisance environmental variables on offset performance. Shown 
are evaluations of offsets from 1- and 2-trait models trained using only adaptive environments (0-
nuisance) or with adaptive environments and the addition of N>0 non-adaptive environmental 
variables (N-nuisance). RONA is not shown because it is univariate with respect to environmental 
variables. Nuisance variables are listed in Table 2. Code to create figures can be found in SC 02.02.06 
and SC 02.02.08. 
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Figure 6    Performance decays with climate novelty relative to training data. Shown is model 
performance (y-axes) across methods at climate center (A) and across common gardens each 
representing increasing degrees of climate novelty relative to training data (x-axis of B) where all 
100 populations have been transplanted. The standard deviation values (x-axis, B) are applicable to 
all environments for all landscapes except for Env2 in the Stepping Stone - Mountain landscape; the 
corresponding standard deviations are 1.55, 2.12, 2.47, 2.82, 3.18, 3.53, 3.88, 4.24, 4.60, 4.95, 5.3. 
When fitness for all transplanted individuals was zero, a model’s performance was undefined and 
manually set to 0; no method predicted a single offset value for all populations in these situations. 
Setting undefined performance to 0 did not substantially impact patterns between performance 
and climate novelty, and is explored in Supplemental Text S3. Data included in this figure are from 
models trained using 1- and 2-trait simulations from the Climate Novelty workflow, which excludes 
both RONAtemp and RONAEnv2. Code used to create this figure can be found in SC 02.04.05. 
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Supplemental Notes 144 

S1 - Implementation of Offset Methods 145 

 146 

See Supplemental Note S2 for specific citations of code. 147 

 148 

1.1 | Gradient Forests 149 

For a given set of input loci (all, adaptive, or neutral; see Q3 in Methods), and 150 

for all workflows, Gradient Forests (GFOffset) is trained using ntree=500, 151 

corr.threshold=0.5, and maxLevel=(0.368 ∗ !
2
)	, where N is the number of 152 

populations. Using default linear extrapolation, the trained model is projected onto 153 

the landscape using the `predict` function and the same environmental values 154 

used in training. This creates the “current” projection used to calculate offset 155 

below. 156 

 The trained models are then fit to the climate of each of 100 common gardens 157 

on the landscape for the Adaptive Environment and Nuisance Environment 158 

scenarios, or to each of the 11 Climate Novelty scenarios. Specifically, for each 159 

garden, the `predict` function is used to take the trained model and the gardenʼs 160 

climate to create a projection similar to that using current climate data (previous 161 

paragraph). Then the Euclidean distance is taken between the current and future 162 

projections to calculate offset. 163 
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1.2 | The Risk Of Non-Adaptedness 164 

For a given set of input loci (all, adaptive, or neutral; see Q3 in Methods), we 165 

first discarded any locus that did not have significant (p ≤ 0.05) linear models 166 

relating population-level allele frequencies with environmental variables. p-167 

values were not corrected for multiple testing. For each common garden, and once 168 

for each environmental variable, RONA offset for each population was calculated 169 

by averaging the absolute allele frequency difference between the populationʼs 170 

current frequency and that predicted by using each locusʼ linear model fit using 171 

climate of the common garden, 172 

 173 

where n is the total number of loci with significant linear models; Spresent and Ipresent 174 

are respectively the slope and intercept from the linear model for locusi relating 175 

current climate and allele frequencies from all populations; AAFpresent is the current 176 

allele frequency for the population under consideration; and EFfuture is the 177 

environmental value for the common garden. RONA can only be calculated for a 178 

single population and environmental variable at a time. 179 
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 RONA was excluded from Nuisance Environment and Climate Outlier 180 

workflows because of its poor (Fig. 2A) and variable (Fig. 2C, Fig. 4) performance 181 

from evaluations from the Adaptive Environment workflow.  182 

Of note, in some instances, particularly Adaptive Environment datasets 183 

simulated with oligogenic architectures, there were no loci with significant linear 184 

relationships with environmental variables and these instances were given NA 185 

performance values (i.e., excluded from analyses). 186 

1.3 | Landscape and Ecological Association (LEA) Studies R package 187 

We used the genetic.offset function in the LEA package to estimate 188 

LFMM2offset for each workflow (Fig. 1). The genetic.offset function was used 189 

with default settings, except for K, the number of subdivisions within the data. To 190 

determine K needed for the genetic.offset function for 1- and 2-trait 191 

simulations, we first used filtered SNP data (see Section 2.1) to estimate 21 principal 192 

components (PCs) using principal component analysis (PCA). Then we equated K 193 

to the number of PC axes that explain greater than 1.3x the variation of the next 194 

subsequent axis (see line 677-697 of c-AnalyzeSimOutput.R from Lotterhos, 2023). 195 

This resulted in varied K across simulation levels and replicates (Fig S1). For the 6-196 

trait simulation, it was never the case that a PC axis explained >1.3x the variation 197 

explained by the previous axis, so we used the elbow rule to estimate K=7 (Fig S2). 198 

https://github.com/ModelValidationProgram/MVP-NonClinalAF/blob/main/src/c-AnalyzeSimOutput.R
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=09664231223123976&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:c0f1de83-69a9-4564-b0ba-5cf548664a7f&options=%7B%22manual_text_override%22%3A%22Lotterhos%2C%202023%22%2C%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3Ac0f1de83-69a9-4564-b0ba-5cf548664a7f%22%3A%7B%22suppressAuthor%22%3Atrue%7D%7D%7D
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 199 

Fig S1    Distribution of K used for the lfmm2 genetic.offset function for 1- and 200 
2-trait simulations. K was estimated by determining the number of principal 201 
component axes that explain at least 1.3x times the amount of variation of the 202 
subsequent axis. Code used to create this figure can be found in SC 02.09.01.  203 
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 204 

Fig S2    Percent variance explained from principal component (PC) axes from 205 
principal component analysis of SNP data from the 6-trait simulation. The “elbow 206 
rule” was used to estimate K=7 for this simulation. Code used to create this figure 207 
can be found in SC 02.05.11.  208 
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1.4 | Redundancy Analysis  209 

RDAoffset was implemented as in Capblancq & Forester (2021). Note that the 210 

environmental variables used here across workflows had minimal correlation, as 211 

required by RDA (Fig. S4). In addition to the three marker sets used as input (all, 212 

adaptive, or neutral; see Q3 in Methods), we also used RDA-outliers as input to RDA 213 

offset estimation. RDA-outlier loci were those from separate RDA models trained 214 

using all loci and adaptive environments, and were included in this study because 215 

of their use in the original implementation of RDAoffset by Capblancq & Forester 216 

(2021). RDA-outliers were identified as in Capblancq et al. (2018) for loci with q-217 

values < 0.05. For each 1-, 2-, and 6-trait simulation replicate, RDAoffset was estimated 218 

with (RDA-corrected) and without (RDA-uncorrected) correction for population 219 

genetic structure. When correcting for structure, the loadings for the first two PCs 220 

from PCA estimated with all loci were used. Because RDA-outliers performed on 221 

par with or worse than other marker sets in 1-trait (Fig S2A), 2-trait (Fig S3B), and 222 

6-trait (Fig S3C) evaluations from the Adaptive Environment workflow (Fig. 1) we 223 

focus on all, neutral, and adaptive marker sets for the main text. 224 

https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=9682010817302059&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:1f8b86de-4ebd-433d-b23d-fad0230fd74b&options=%7B%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3A1f8b86de-4ebd-433d-b23d-fad0230fd74b%22%3A%7B%22suppressAuthor%22%3Atrue%7D%7D%7D
https://app.readcube.com/library/ebbd69cb-57f0-4ffb-b5af-46d0637d5128/all?uuid=6148538110331822&item_ids=ebbd69cb-57f0-4ffb-b5af-46d0637d5128:36e2efe7-1624-4ea5-a365-868a322ba8ab&options=%7B%22items%22%3A%7B%22ebbd69cb-57f0-4ffb-b5af-46d0637d5128%3A36e2efe7-1624-4ea5-a365-868a322ba8ab%22%3A%7B%22suppressAuthor%22%3Atrue%7D%7D%7D
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225 

226 

 227 
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Fig S3    Performance of RDA-outlier markers are on par with other marker sets for 228 
(A) 1-trait, (B) 2-trait, and (C) 6-trait evaluations of offset estimated with (RDA-229 
corrected) or without (RDA-uncorrected) population structure correction. Data in 230 
this figure is from the Adaptive Environment workflow. Code to create this figure 231 
can be found in SC 02.06.02.  232 
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S2 - Coding workflows 233 

 Below we reference the scripts (*.R, *.py) and notebooks (*.ipynb) used to 234 
analyze data in this manuscript using the naming convention described in the Data 235 
Availability section (e.g., SC 05.02). Scripts are often written using only functions, 236 
instead of a linear development of code. This allows the functions to be 237 
imported/sourced in other scripts or notebooks to avoid code redundancy. At the 238 
top of all script files are detailed instructions for use. The “main” function in many 239 
script files gives a general outline for the code and calls all other functions. 240 

 All python scripts and notebooks are run in the “mvp_env” (python v3.8) 241 
Anaconda environment. All GF scripts are run in R within the “r35” (R v3.5) 242 
Anaconda environment . All other R code is run within the “MVP_env_R4.0.3” (R 243 
v4.0.3) Anaconda environment. All Anaconda environments can be recreated using 244 
their .yml files found in the code archive. These files contain all package and 245 
library versions at the time of saving. Package and library versions that were used 246 
are found at the top of each notebook - look for “Click to view session information” 247 
(python notebooks) or printouts from `sessionInfo()` (R notebooks). 248 

 1- and 2-trait simulations are often processed separately from the 6-trait 249 
simulation. Descriptions of coding workflows reflect this. 250 

 All scripts referenced by name are in the SC 01 directory. 251 

 Notebooks used to create figures and tables are not described here (but see 252 
coding archive README). Instead, these notebooks are referenced within the 253 
caption of all figures and tables, or in the main text when appropriate. These 254 
notebooks (mainly within SC 02.02 directory) rely on data processed through the 255 
coding workflows described below. Similarly, code previously described in 256 
Supplemental Note S1 is not redescribed here. 257 

 Simulation data used below within scripts and notebooks has been 258 
processed from SLiM output separately by Lotterhos (2023) into more user-friendly 259 
forms - see here for more information: 260 
https://github.com/ModelValidationProgram/MVP-261 
NonClinalAF/tree/main/sim_ouput_20220428_metadata 262 

1.1 | The Adaptive Environment coding workflow 263 

The Adaptive Environment workflow represents the general pipeline for 264 
processing simulations and running genomic offset methods, most other 265 

https://github.com/ModelValidationProgram/MVP-NonClinalAF/tree/main/sim_ouput_20220428_metadata
https://github.com/ModelValidationProgram/MVP-NonClinalAF/tree/main/sim_ouput_20220428_metadata
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processing code is built on top of this main pipeline (i.e., scripts and notebooks 266 
source/import functions from these scripts to avoid code redundancy). 267 

1.1.1 | 1- and 2-trait simulations 268 

The Adaptive Environment pipeline is kicked off using SC 01.00, which 269 
allows the user to decide which method to run. All analyses were generally run in 270 
batches of 225 simulation levels (one replicate per level). SC 01.00 can call SC 01.01 271 
(for GF), SC 01.05 (for RONA), SC 01.10 (for LFMM), SC 01.07 (for pairwise FST), or 272 
scripts related to RDA (more details below). 273 

GFoffset : SC 01.01 processes the data into formats suitable for GF input. This 274 
includes converting genotype data into derived allele frequencies, asserting MAF 275 
cutoffs, and reformatting environmental data. This script creates .sh files for the 276 
slurm HPC and trains GF models using `MVP_gf_training_script.R`. The slurm 277 
.sh files call SC 01.02, which takes the trained GF model and predicts offset to each 278 
of the 100 environments (population sources) on the landscape using 279 
`MVP_gf_fitting_script.R`. Performance of GF offset predictions are then 280 
validated using SC 01.03. Performance results are saved in a nested dictionary. 281 
Environmental importance is extracted from each GF model using SC 01.04 within 282 
SC 02.10.02. 283 

RONA : Using files created from SC 01.01, SC 01.05 creates files suitable for 284 
RONA analyses and calculates RONA itself. Performance of RONA is validated with 285 
SC 01.06. As with GF, performance results are saved in a nested dictionary.  286 

LFMMoffset : SC 01.10 creates files suitable for LFMM in R and submits jobs to 287 
the slurm HPC to train LFMM with `MVP_process_lfmm.R`. SC 01.10 also submits 288 
SC 01.11 to validate LFMM offsets. 289 
`MVP_watch_for_failure_of_train_lfmm2_offset.py` watches for failed 290 
jobs and reruns them. Performance of LFMM is validated in SC 01.11. As with GF 291 
and RONA, performance results are saved in a nested dictionary. 292 

RDAoffset : `MVP_pooled_pca_and_rda.R` creates principal component 293 
analysis data and RDA objects using allele frequencies of all loci; it also creates 294 
additional files needed downstream. Next, SC 01.12 is run to estimate RDA offset. 295 
Performance of RDAoffset is validated with SC 01.13. As with GF, RONA, and LFMM, 296 
performance results are saved in a nested dictionary. 297 

Nested dictionaries containing validation results from each method are 298 
reformatted and combined into a single object in notebooks within the SC 02.01.00 299 



Supplement - Lind, Lotterhos, and the limits of genomic offsets 

16 

directory. These combined objects are used throughout remaining analyses in 300 
jupyter notebooks found in subdirectories of SC 02. 301 

 1.1.2 | 6-trait simulation 302 

The 6-trait simulation was processed through the Adaptive Environment 303 
workflow using code found in the SC 02.05 directory. 6-trait simulations needed 304 
extra formatting in order to be comparable to the 1- and 2-trait evaluations. First, 305 
SC 02.05.00 assigns individuals to populations using a gridded system. Population-306 
level environmental values are the average climate from assigned individuals on 307 
the landscape (each environmental variable is averaged independently). Genetic 308 
and environmental data was formatted as with 1- and 2-trait simulations. Fitness 309 
for each population in each environment was calculated using 310 
`MVP_climate_outlier_fitness_calculator.R`. The script 311 
`MVP_climate_outlier_fitness_calculator.R` was validated against 312 
previous fitness estimates from 1- and 2-trait simulations in SC 02.05.01. 313 

GF was trained using the same script as 1- and 2-trait simulations 314 
(`MVP_gf_training_script.R`). GF offset was predicted manually in SC 02.05.02, 315 
and validated manually in SC 02.05.03. In SC 02.05.04 - 02.05.05 LFMM was trained 316 
and validated manually. Similarly, RDA was trained and validated in SC 02.05.06 - 317 
SC 02.05.07, and RONA trained and validated in SC 02.05.08 - SC 02.05.09. 318 

1.2 | The Climate Novelty coding workflow 319 

Fitness was calculated for 1- and 2-trait populations within the Climate 320 
Novelty scenarios (x-axis, Fig. 6, Supplemental Note S3) using 321 
`MVP_climate_outlier_fitness_calculator.R` in 02.04.01. 322 

Using 1- and 2-trait offset models output from the Adaptive Environment 323 
workflow, the following code predicted offset to Climate Novelty scenarios (GF: SC 324 
01.14; LFMM: SC 01.16; RDA: SC 01.18; and RONA: SC 01.20) which was subsequently 325 
validated against known fitness (GF: SC 01.15; LFMM: SC 01.17; RDA: SC 01.19; and 326 
RONA: SC 01.21). A few examples of code executions are shown in SC 02.04.03. 327 

 Fitness of 6-trait populations for Climate Novelty scenarios was calculated in 328 
SC 02.04.06. 6-trait GF models used the same scripts as 1- and 2-trait runs (SC 01.14 329 
- SC 01.15); executed from SC 02.04.07. Commands to train LFMM were created in 330 
SC 02.04.07, which called on `MVP_complex_sims_process_lfmm.R`. RDA was 331 
trained manually in SC 02.04.07. Offset from both LFMM and RDA were validated 332 
manually in SC 02.04.08. 333 
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1.3 | The Nuisance Environment coding workflow 334 

Environmental files for Nuisance Environment scenarios were created in SC 335 
02.07.02.02. 336 

Files for 1- and 2-trait simulations were created in SC 02.07.02.01 to train GF 337 
using `MVP_gf_training_script.R`. SC 01.02 and SC 01.03 are used for 338 
predicting and validating GF offset, respectively, executed in SC 02.07.02.02. Code 339 
for LFMM was executed in SC 02.07.02.07 and used `MVP_process_lfmm.R` for 340 
training and SC 01.11 for validation. Commands for RDA were created in SC 341 
02.07.02.06 similarly to Adaptive Environment workflow (calling 342 
`MVP_pooled_pca_and_rda.R`) and used `MVP_nuisance_RDA_offset.R` for 343 
training and `MVP_nuisance_rda_validation.py` for validation. 344 

6-trait sims were processed for GF exactly as they were for 6-trait data in the 345 
Adaptive Environment workflow (with updated environmental files) and executed 346 
in SC 02.07.02.03, SC 02.07.02.04, and validated manually in SC 02.07.02.10. Code to 347 
train both LFMM and RDA was executed in SC 02.07.02.12, which called on 348 
`MVP_complex_sims_process_lfmm.R` for LFMM. LFMM was validated in SC 349 
02.07.02.13; RDA was validated in SC 02.07.02.14. 350 

1.4 | Misc 351 

`MVP_summary_functions.py` contains much of the API used within notebooks 352 
for loading and filtering data as well as creating figures. It is often imported using 353 
the alias `mvp` within python scripts and notebooks.  354 
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S3 - Defining Climate Novelty scenarios 355 

 To understand if genomic offset models maintained predictive performance 356 
in environments differentiated from training environments, we created 11 357 
climates, each progressively more distant from the mean training environment. 358 
Specifically, for each environmental variable, we used a standardized set of z-359 
scores (zE ∈ {1.72, 2.35, 2.74, 3.13, 3.53, 3.92, 4.31, 4.70, 5.09, 5.48, 5.88}) to calculate 360 
corresponding environmental values. In other words, we used the distribution of 361 
the within-landscape values from which to identify the appropriate value for a 362 
given z-score for each environmental variable independently. The temp 363 
environment and all six of the 6-trait environments were given positive values for 364 
Climate Novelty scenarios, and Env2 was given negative values. 365 

Novelty climates for 6-trait and 2-trait evaluations are shown Fig S5A and B, 366 
respectively. In this and other figures related to performance in Climate Novelty 367 
scenarios, we also include zE=0.00 for comparison of novelty climates to the mean 368 
training climate (i.e., climate center). We chose z-scores over Mahalanobis 369 
distances because of 1) the reduced correlation structure among environmental 370 
variables (where z-scores and Mahalanobis distances should be roughly 371 
equivalent; Fig. S4), and 2) the large number of combinations of values from 372 
environmental variables that could be used for a given Mahalanobis distance. The 373 
standard deviation values that we used are applicable to all environments and for 374 
all landscapes except for Env2 in the Stepping Stone - Mountain landscape; the 375 
corresponding standard deviations for this case are zE ∈ {1.55, 2.12, 2.47, 2.82, 3.18, 376 
3.53, 3.88, 4.24, 4.60, 4.95, 5.3}. 377 

 378 
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Fig S5    Differentiation of Climate Novelty environments (blue stars, including 379 
climate center) from within-landscape environments (black circles) using 380 
Principal Component Analysis (PCA) of environmental data. Environmental data 381 
is centered and standardized relative to the within-landscape environmental 382 
values. Scatter plots show the first two principal components (PCs) of 383 
environmental data used to evaluate 6-trait (A) and 2-trait (B) Climate Novelty 384 
scenarios. There is no figure for 1-trait evaluations because there would only be 385 
one PC axis. Code to create these figures can be found in SC 02.04.10.  386 
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S4 - Missing data in Climate Novelty evaluations 387 

When calculating fitness of populations in Climate Novelty scenarios, it 388 
could be the case that all populations have zero fitness because of the extremity of 389 
the novel climate. In these cases the calculation of performance is technically  390 
undefined due to the lack of variability in one of the vectors (i.e., the code returns 391 
“NAN”), but for Figure 7 we replaced these undefined values with 0 (because there 392 
was no predictive performance of the offset method). We refer to these cases as 393 
missing data below. It is therefore important to explore the effect of these missing 394 
data points on patterns observed between performance and climate novelty (i.e., 395 
in the context of Fig. 7 of the main text) to ensure patterns before and after setting 396 
missing data to 0 do not affect inferences. 397 

To understand impacts of missing data, we created figures that grouped 398 
simulation and experimental levels across novelty scenarios (Fig. S33). We also 399 
printed out specific scenarios in the code (SC 02.04.05). Importantly, missing data 400 
is not substantial until Climate Novelty (CN) Scenario 4.31, which is preceded by 401 
the drop in performance from datasets with elevated LAΔSA. After CN Scenario 4.31 402 
missing data begins to increase because of climate novelty, first with datasets 403 
where high levels of LAΔSA take place through oligogenic architectures, then 404 
missing data is more uniform across simulation and experimental parameters for 405 
the remaining CN Scenarios (Fig. S33). (Before CN Scenario 4.31, missing data is not 406 
due to all populations having zero fitness - instead missing data is primarily due to 407 
1-trait oligogenic scenarios evaluated by RONA where there are no adaptive alleles 408 
with significant clines with temp in the Estuary - Clines landscape (Fig. S33; SC 409 
02.04.05).) Finally, we also explored patterns presented in Fig. 6 before setting 410 
undefined performance scores to zero and found nearly identical trends (not 411 
shown).  412 
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(Fig S33) 413 

414 

  415 
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(Fig S33 continued) 416 

417 

  418 
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(Fig S33 continued) 419 

420 

  421 
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(Fig S33 continued) 422 

423 

  424 
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(Fig S33 continued) 425 

 426 

Fig S33    The effect of simulation parameters on missing data for Climate Novelty 427 
scenarios. Shown are the percent missing data (y-axes) due to experimental and 428 
simulation parameters (legends). Missing data is when all populations have zero 429 
fitness in a given novelty scenario, and thus performance cannot be defined 430 
(though we manually set it to zero for other figures). Data included in these figures 431 
are from 1- and 2-trait evaluations of Climate Novelty scenarios. Code to create 432 
these figures can be found in SC 02.04.05.  433 
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Supplemental Tables 434 

 435 

 436 

 437 

Table S1    Results from Type II ANOVAs from regressing simulation factors on 438 
offset performance (see Equation 1 of the main text). In this table, the common 439 
garden ID was included as a categorical factor (n=100 per simulation). Code to 440 
create these tables can be found in SC 02.02.01.  441 
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 442 

 443 

 444 

Table S2    Results from Type II ANOVAs from regressing the proportion of clinal 445 
QTNs (cor_TPR_tmp and cor_TPR_sal) and clinal neutral alleles 446 
(cor_FPR_temp_neutSNPs, cor_FPR_sal_neutSNPs) on offset performance (see 447 
Equation 2 of the main text). Code to create these tables can be found in SC 02.02.05.  448 
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449 

450 

 451 

Table S3     Results from Type II ANOVAs regressing two factors - degree of local 452 
adaptation (final_LA) and levels of isolation-by-environment in all marker sets) on 453 
offset performance. Code to create these tables can be found in SC 02.02.11.  454 



Supplement - Lind, Lotterhos, and the limits of genomic offsets 

29 

 455 

Nuisance Level Adaptive models All models Neutral models 

1-trait 1-nuisance 45/45 45/45 45/45 

1-trait 3-nuisance 45/45 43/45 38/45 

1-trait 4-nuisance 43/45 36/45 35/45 

2-trait 2-nuisance 120/180 119/180 119/180 

2-trait 3-nuisance 140/180 119/180 119/180 

Table S4    Gradient Forests (GF) sometimes incorrectly identifies the environments 456 
driving adaptation. Shown are the proportions of simulation levels (N 1-trait = 45 457 
levels; N 2-trait = 180 levels; one replicate each) where weighted feature importance 458 
output from GF correctly identified the adaptive environments in the top-most 459 
ranks. If at least one nuisance environment was ranked above an adaptive 460 
environment this was counted as incorrect. Data used to create this table is from 461 
the GF models output from the Nuisance Environment workflow. Code used to 462 
create this table can be found in SC 02.10.02.  463 
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Supplemental Figures 464 

Figs. S1-S3 are in Supplemental Note S1.  465 



Supplement - Lind, Lotterhos, and the limits of genomic offsets 

31 

 466 

Fig S4    Correlation (Spearmanʼs rho) 467 
among environmental variables faceted 468 
by landscape. On-diagonal entries are 469 
histograms of environmental values, 470 
off-diagonal entries are scatter plots 471 
between pairwise variables. Included 472 
are environmental variables from 1-473 
trait (temp), 2-trait (temp, Env2), and 6-474 
trait simulations (MAT, MTWetQ, 475 
MTDQ, PDM, PwarmQ, PWM), as well as 476 
nuisance environmental variables (ISO, 477 
PSsd, TSsd). Note Estuary - Clines and 478 
Stepping Stone - Clines have the same 479 
correlation structure; Stepping Stones - 480 
Mountain only differs from these two 481 
landscapes with Env2. Figure continues 482 

on the next page. Code to create these figures can be found in SC 02.07.02.11.  483 
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(Fig S4 continued) 484 

6-trait 485 

  486 
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Fig S5 is in Supplemental Note S3  487 
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 488 

Fig S6    Percent sum of squares of the various factors from the ANOVA model in 489 
Table S1. Boxplots are created from the percent sum of squares from each methodʼs 490 
individual ANOVA model. Data included in this figure are from models trained 491 
using all markers and simulations with two selective environments with 492 
performance evaluated in all 100 common gardens. Code to create this table is in 493 
02.02.01.  494 
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 495 

Fig S7    Effect of the degree of local adaptation (x-axes) on method performance (y-496 
axes) colored by the relative strength of selection on the two traits. Shown are the 497 
linear relationships between the median validation scores (circles, taken from 498 
validation scores across all 100 common gardens on the landscape) and the 499 
simulationʼs mean level of local adaptation (taken across all 100 populations). Data 500 
included in this figure are from models trained using all markers and simulations 501 
with two selective environments. Code to create this figure can be found in SC 502 
02.02.02.  503 
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 504 

Fig S8    Effect of polygenicity on performance of offset methods trained using all 505 
markers on simulations with two adaptive traits. Code to create this figure can be 506 
found in SC 02.02.01.  507 
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 508 

Fig S9    Effect of demography on performance of offset methods trained using all 509 
markers on simulations with two adaptive traits. Code to create this figure can be 510 
found in SC 02.02.01.  511 



Supplement - Lind, Lotterhos, and the limits of genomic offsets 

38 

 512 

Fig S10    Stacked bar plot of the percent sum of squares from Type II ANOVAs from 513 
regressing the proportion of clinal QTNs and clinal neutral alleles on offset 514 
performance (see Equation 2 of the main text). Code to create this table is in 515 
02.02.05.  516 
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 526 

 527 

 528 

Fig S11    Impact on method performance (y-axes) from the proportion of QTNs with 529 
clinal relationships with temp (first column) or Env2 (second column). Model 530 
performance is quantified as Kendallʼs rank correlation between offset and fitness; 531 
shown are median values from scores from 10 replicates per seed (100 common 532 
gardens for each replicate). Data included in this figure is from evaluation of 2-trait 533 
simulations using all markers. Code to create these figures can be found in 02.01.03.  534 
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535 

 536 

Fig S12    Stacked bar plot showing correlation between environmental variables 537 
(rows) and axes of population genetic structure (Principal Component Analysis 538 
axes [PC axes]; columns). Data included in this figure is from all 2-trait simulations. 539 
Code to create this figure can be found in SC 02.10.03.  540 
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 542 

Fig S13    Relationship between the proportion of clinal neutral loci for temp (y-543 
axes, first row) or Env2 (y-axes, second row) with the strength of the relationship 544 
between environmental variables and axes of population genetic structure. Purple 545 
= Stepping Stone - Clines; teal = Stepping Stone - Clines; yellow = Estuary - Clines. 546 
Data included in this figure is from all 2-trait simulations. Code to create this figure 547 
can be found in 02.10.03.  548 
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(Fig S14) 549 

550 
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(Fig S14 continued) 552 

553 

  554 
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(Fig S14 continued) 555 

556 
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(Fig S14 continued) 558 

559 

  560 
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(Fig S14 continued) 561 

562 

  563 
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(Fig S14 continued) 564 

565 

 566 

Fig S14    Relationship between median performance and absolute correlation 567 
(Pearsonʼs r) between environmental variables and axes of population genetic 568 
structure (principal component analysis axes). Each subfigure is for a different 569 
method (see panel titles). Data used in this figure is from 2-trait simulations. Code 570 
to create this figure can be found in SC 02.10.03.  571 
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 572 

Fig S15    Adaptive markers contain greater levels of isolation-by-environment 573 
(IBE) than other marker sets. IBE is quantified as Spearmanʼs rank correlation 574 
between population pairwise FST and Euclidean distance of adaptive environments. 575 
Code to create this figure can be found in SC 02.02.10.  576 
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(Fig S16) 577 

A) adaptive markers 578 

 579 

B) all markers 580 

  581 



Supplement - Lind, Lotterhos, and the limits of genomic offsets 

53 

C) neutral markers 582 

 583 

Fig S16    The relationship between the degree of local adaptation (LAΔSA), levels of 584 
IBE within marker sets, and median performance of models trained with one of the 585 
three marker sets: (A) adaptive, (B) all, and (c) neutral marker sets. IBE is 586 
quantified as Spearmanʼs rank correlation between population pairwise FST and 587 
Euclidean distance of adaptive environments. Data included in these figures are 588 
from 1- and 2-trait simulations. Code to create these figures can be found in SC 589 
02.02.10.  590 
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591 

 592 

Fig S17    Levels of isolation-by-environment in marker sets vary across landscapes 593 
(A) and the degree of local adaptation reached by metapopulations on these 594 
landscapes (B). The pattern in (A) given (B) is in contrast to patterns between levels 595 
of IBE and the degree of local adaptation (Fig. S29). I IBE is quantified as Spearmanʼs 596 
rank correlation between population pairwise FST (gdist) and Euclidean distance of 597 
adaptive environments (cdist). Data in this figure is from all 1- and 2-trait 598 
simulations. Code to create this figure can be found in SC 02.02.10.  599 
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600 

 601 

Fig S18    The levels of isolation-by-distance in marker sets (panels) are weakly 602 
correlated with the degree of local adaptation (LAΔSA) within simulation levels. IBE 603 
is quantified as Spearmanʼs rank correlation between population pairwise FST 604 
(gdist) and Euclidean distance of adaptive environments (cdist). Data included in 605 
this figure is from all marker sets from 1- and 2-trait simulations. Code to create 606 
this figure can be found in 02.02.10.  607 
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(Fig S19) 608 

609 

 610 
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(Fig S19 continued) 611 

612 

 613 
 614 
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(Fig S19 continued) 615 

 616 

 617 
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Fig S19    Differences in levels of IBE between marker sets used to train models is 618 
generally unrelated to differences in model performances. Shown is the difference 619 
in median performance between adaptive and all marker sets and the difference in 620 
IBE between these marker sets. IBE is quantified as Spearmanʼs rank correlation 621 
between population pairwise FST and Euclidean distance of adaptive environments. 622 
Data in this figure is from 1- and 2-trait simulations. Code to create these figures 623 
can be found in SC 02.02.12.  624 
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 625 

 626 

                    Longitude 627 

 628 

Fig S20   A map of Garden ID (unbolded entries) across each landscape for 1-, 2- and 629 
6-trait simulations (latitudinal and longitudinal grids are bolded). This map can be 630 
used to interpret the ordering of gardens along x-axes of Figs. S21 S22 and S23. Code 631 
used to create this figure can be found in SC 02.02.04.  632 
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(Fig. S21) 633 

634 

 635 

 636 

(Fig S21 continued) 637 
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Fig S21    Genomic offset methods have variable performance across the Stepping-641 
Stone Clines landscape. Shown is the variability of each offset method performance 642 
(y-axes) across the 100 common gardens (x-axes). Gardens are ordered from left to 643 
right by garden ID. This ordering of gardens is equivalent to the southwestern-most 644 
garden first and northeastern-most garden last (see Fig. S20 for a map of garden ID 645 
across each landscape). Similar figures for Stepping-Stone Mountain and Estuary-646 
Clines landscapes can be found in Fig S22 and Fig S23, respectively. Data included 647 
in this figure is from evaluation of 1- and 2-trait simulations using all markers. Code 648 
used to create these figures can be found in SC 02.02.04.  649 
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(Fig S22) 650 

651 

 652 

 653 

 654 
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(Fig S22 continued) 655 

 656 

 657 
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Fig S22    Genomic offset methods have variable performance across the Stepping-659 
Stone - Mountain landscape. Shown is the variability of each offset method 660 
performance (y-axes) across the 100 common gardens (x-axes). Gardens are 661 
ordered from left to right by garden ID. This ordering of gardens is equivalent to 662 
the southwestern-most garden first and northeastern-most garden last (see Fig. S20 663 
for a map of garden ID across each landscape). Similar figures for Stepping-Stone - 664 
Clines and Estuary - Clines landscapes can be found in Fig S21 and Fig S23, 665 
respectively. Data included in this figure is from evaluation of 1- and 2-trait 666 
simulations using all markers. Code used to create this figure can be found in SC 667 
02.02.04.  668 
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(Fig S23) 669 

670 

671 
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(Fig S23 continued) 673 

674 
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Fig S23    Genomic offset methods have variable performance across the Estuary - 677 
Clines landscape. Shown is the variability of each offset method performance (y-678 
axes) across the 100 common gardens (x-axes). Gardens are ordered from left to 679 
right by garden ID. This ordering of gardens is equivalent to the southwestern-most 680 
garden first and northeastern-most garden last (see Fig. S20 for a map of garden ID 681 
across each landscape).  Similar figures for Stepping-Stone - Clines and Stepping-682 
Stone - Mountain landscapes can be found in Fig S21 and Fig S22, respectively. Data 683 
included in this figure is from evaluation of 1- and 2-trait simulations using all 684 
markers. Code used to create this figure can be found in SC 02.02.04.  685 
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(Fig. S36)686 
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Fig S24    Variability of genomic offset performance (y-axes) for a given model (+) 688 
often decreases with increasing median performance (x-axes). Shown are patterns 689 
from each offset method (rows) for each marker set (columns) used in training. 690 
Data included in this figure is from evaluation of 2-trait simulations from Stepping-691 
Stone - Clines landscapes processed through the Adaptive Environment workflow. 692 
For similar figures for Stepping-Stone - Mountain and Estuary - Clines landscapes, 693 
see Figs. S25-S26, respectively. Code used to create these figures can be found in SC 694 
02.02.07.  695 
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 696 

Fig S25    Variability across evaluations of genomic offsets often decreases with 697 
increasing average performance across marker sets. Data included in this figure is 698 
from evaluation of 2-trait simulations from Stepping-Stone - Mountain landscapes. 699 
For similar figures for Stepping-Stone - Clines and Estuary - Clines landscapes, see 700 
Figs. 24 and S26, respectively. Code used to create these figures can be found in SC 701 
02.02.07. 702 
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 703 

Fig S26    Variability across evaluations of genomic offsets often decreases with 704 
increasing average performance across marker sets. Data included in this figure is 705 
from evaluation of 2-trait simulations from Estuary - Clines landscapes. For similar 706 
figures for Stepping-Stone - Clines and Stepping-Stone - Mountain landscapes, see 707 
Figs. S24 and S25, respectively. Code used to create these figures can be found in 708 
SC 02.02.07.  709 
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 710 

Fig S27    Variability across evaluations of genomic offsets is often unrelated to the 711 
variability in the degree of local adaptation across populations. Data included in 712 
this figure is from evaluation of 2-trait simulations from Stepping-Stone - Mountain 713 
landscapes. For similar figures for Stepping-Stone - Clines and Estuary - Clines 714 
landscapes, see Figs. S27 and S28, respectively. Code used to create these figures 715 
can be found in SC 02.02.07.  716 
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 717 

Fig S28    Variability across evaluations of genomic offsets is often unrelated to the 718 
variability in the degree of local adaptation across populations. Data included in 719 
this figure is from evaluation of 2-trait simulations from Stepping Stone - Clines 720 
landscapes. For similar figures for Estuary - Clines and Stepping-Stone - Mountain 721 
landscapes, see Figs. S26 and S28, respectively. Code used to create these figures 722 
can be found in SC 02.02.07.  723 
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 724 

Fig S29    Variability across evaluations of genomic offsets is often unrelated to the 725 
variability in the degree of local adaptation across populations. Data included in 726 
this figure is from evaluation of 2-trait simulations from Estuary - Clines 727 
landscapes. For similar figures for Stepping-Stone - Clines and Stepping-Stone - 728 
Mountain landscapes, see Figs. S26 and S27, respectively. Code used to create these 729 
figures can be found in SC 02.02.07.  730 
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 732 

Fig S30    Effect of non-adaptive nuisance environmental variables on offset 733 
performance faceted by landscape. Shown are offsets from 1- and 2-trait 734 
simulations trained using only adaptive environments (0-nuisance) or with 735 
adaptive environments and the addition of N>0 non-adaptive environmental 736 
variables (N-nuisance). RONA is not shown because it is univariate with respect to 737 
environmental variables. The nuisance variables for 1-trait simulations are: Env2, 738 
ISO, TSsd, PSsd; and for 2-trait simulations are ISO, TSsd, PSsd; see Table 2. The 739 
Nuisance Environment workflow was used to produce this data. Code to create 740 
these figures can be found in SC 02.02.06.  741 
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742 

 743 

Fig S31    Effect of non-adaptive nuisance environmental variables on offset 744 
performance faceted by marker set. Shown are offsets from 1- (A) and 2-trait (B) 745 
simulations trained using only adaptive environments (0-nuisance) or with 746 
adaptive environments and the addition of N>0 non-adaptive environmental 747 
variables (N-nuisance). RONA is not shown because it is univariate with respect to 748 
environmental variables. The nuisance variables for 1-trait simulations are: Env2, 749 
ISO, TSsd, PSsd; and for 2-trait simulations are ISO, TSsd, PSsd; see Table 2. Code to 750 
create these figures can be found in SC 02.02.06.  751 



Supplement - Lind, Lotterhos, and the limits of genomic offsets 

79 

(Fig. S31) 752 

1-trait 1-nuisance 753 
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(Fig. S31 continued) 756 

1-trait 3-nuisance 757 

 758 
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(Fig. S31 continued) 760 

1-trait 4-nuisance 761 

 762 
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(Fig. S31 continued) 764 

2-trait 2-nuisance 765 

 766 
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(Fig. S31 continued) 768 

2-trait 3-nuisance 769 

 770 

771 
Fig S32    Pairwise comparison of performance differences between marker sets for 772 
Nuisance Environment scenarios. The first row for each nuisance level (N-trait N-773 
nuisance) are scatterplots of pairwise comparisons of performance between 774 
marker sets (histograms in each margin) from both 1- and 2-trait models where 775 
density of points is indicated by color in legend (note color scale is different for 776 
each figure to accentuate patterns in data). The second row for each nuisance level 777 
are histograms for the difference in performance between marker sets for a given 778 
model. Method-specific figures are not shown except in SC 02.02.06. Data for these 779 
figures includes 1- and 2-trait Nuisance Environment evaluations. Code to create 780 
these figures can be found in SC 02.02.06.  781 
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Fig S33 is in Supplemental Note S4  782 
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783 

 784 

Fig S34    Pairwise comparison of performance differences between marker sets for 785 
Climate Novelty scenarios. Shown are scatterplots of pairwise comparisons of 786 
performance between marker sets (histograms in each margin) from both 1- and 2-787 
trait models where density of points is indicated by color in legend (note color scale 788 
is different for each figure to accentuate patterns in data). Data for these figures 789 
includes 1- and 2-trait Climate Novelty evaluations. Code to create these figures can 790 
be found in SC 02.04.05.  791 
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