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Abstract
Methods using genomic information to forecast potential population maladapta-
tion to climate change or new environments are becoming increasingly common, 
yet the lack of model validation poses serious hurdles toward their incorporation 
into management and policy. Here, we compare the validation of maladaptation 
estimates derived from two methods—Gradient Forests (GFoffset) and the risk of 
non-	adaptedness	(RONA)—using	exome	capture	pool-	seq	data	from	35	to	39	popu-
lations	across	three	conifer	taxa:	two	Douglas-	fir	varieties	and	jack	pine.	We	evalu-
ate sensitivity of these algorithms to the source of input loci (markers selected 
from	genotype–environment	associations	[GEA]	or	those	selected	at	random).	We	
validate	these	methods	against	2-		and	52-	year	growth	and	mortality	measured	in	
independent	 transplant	 experiments.	 Overall,	 we	 find	 that	 both	 methods	 often	
better predict transplant performance than climatic or geographic distances. We 
also find that GFoffset	and	RONA	models	are	surprisingly	not	improved	using	GEA	
candidates. Even with promising validation results, variation in model projections 
to future climates makes it difficult to identify the most maladapted populations 
using	either	method.	Our	work	advances	understanding	of	the	sensitivity	and	ap-
plicability of these approaches, and we discuss recommendations for their future 
use.
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1  |  INTRODUC TION

Environmental and land use change pose unprecedented risk to 
global	 biodiversity	 loss	 (Exposito-	Alonso	 et	 al.,	 2022;	 Nadeau	
et al., 2017; Urban, 2015). Historically, the impacts of these 
changes on species' distributions have been projected through 
species distribution modeling (e.g., Thuiller et al., 2008). However, 
these methods often fail to account for the environmental drivers 
of local adaptation or the various evolutionary mechanisms (e.g., 
gene flow, phenotypic plasticity) by which populations could re-
spond	 to	 environmental	 change	 (O'Neill	 et	 al.,	 2008; Waldvogel 
et al., 2020). Recently, methods incorporating genomic informa-
tion to forecast climate maladaptation have increased in popular-
ity. Predominant among these, Gradient Forests (GFoffset, sensu 
Fitzpatrick & Keller, 2015)	and	the	risk	of	non-	adaptedness	(RONA;	
Rellstab et al., 2016) use current relationships between genotype 
and climate to estimate genomic offset (i.e., a measure of maladap-
tation between a population's current or future environment and 
its environmental optimum; see Section 2).	Often	used	to	estimate	
maladaptation to future climate change, these offset methods can 
also	incorporate	nonclimatic	environmental	variables.	If	such	offset	
methods were shown to be robust when estimating maladaptation 
to any future environmental factor, they could circumvent the need 
for	long-	term	field	experiments	and	could	rapidly	inform	manage-
ment	priorities,	or	provide	an	option	for	species	where	experimen-
tation is not feasible.

Despite	their	current	popularity,	genomic	offset	methods	remain	
largely	 unvalidated	 with	 a	 few	 exceptions.	 For	 instance,	 Láruson	
et al. (2022) used simulated data to evaluate GFoffset. They found 
that when (1) climate and genotypes are known without error, (2) all 
populations across the simulated landscape are locally adapted, and 
(3) validation is carried out within the climate space used in train-
ing, the predicted offset had a strong negative rank correlation with 
simulated fitness, and GFoffset models trained using all markers per-
formed no better than GFoffset models trained using causal markers. 
Furthermore, they found that environmental distances calculated 
using environmental variables driving local adaptation also had a 
strong negative relationship with simulated fitness, though this was 
not the case when noncausal environments were included in dis-
tance calculations.

Compared to simulated data, attempts to validate GFoffset 
using empirical data where error is inherent have found relatively 
weaker relationships between GFoffset and juvenile performance 
measured in a common garden (Fitzpatrick et al., 2021). This sug-
gests that offset models may not perform as well in practice as they 
do under ideal circumstances. Even so, and similar to findings of 
Láruson	et	al.	(2022), Fitzpatrick et al. (2021) also found GFoffset to 
be more accurate than naïve climate distances, further suggesting 
genomic	 offset	methods	 of	 this	 and	 other	 types	 (e.g.,	 Capblancq	
& Forester, 2021) provide advantages over climate data alone. 
However, the relatively weaker empirical performance than that 
found from simulation data may be improved with more direct mea-
sures of survival and reproduction.

In	empirical	 settings,	GFoffset models are often used to project 
offset to areas of the species' range where no populations have 
been sampled and to climates many decades into the future (e.g., 
Bay et al., 2018; Fitzpatrick & Keller, 2015; Gougherty et al., 2021; 
Lu et al., 2019; Vanhove et al., 2021). However, projection to unsam-
pled environments can lead to inaccuracies when models cannot 
generalize well. While generalizability poses one hurdle, it is unclear 
whether more accessible forms of data (e.g., climate or geographic 
distance) perform as well as these genetically based methods in all 
systems. Furthermore, offset implementations have used disparate 
sets and sample sizes of both populations and loci to project future 
offset	to	changing	climates,	without	exploring	the	 impact	of	these	
sources on model predictions (but see e.g., Fitzpatrick et al., 2021; 
Láruson	et	al.,	2022).

Validating these methods' predictions of maladaptation to fu-
ture climate is challenging due to the temporal nature of such pro-
jections.	 However,	 transplant	 experiments	 (i.e.,	 common	 gardens	
or	provenance	trials)	can	be	used	to	quantify	performance	by	cor-
relating	measurements	of	fitness-	related	phenotypes	with	the	off-
set projected to the contemporary climate of the growing site (Blois 
et al., 2013; Fitzpatrick et al., 2021).

Tree species are ideally suited to empirically validate predic-
tions from offset methods because there is abundant evidence from 
transplant	experiments	to	suggest	that	many	tree	species	are	locally	
adapted to climate (Boshier et al., 2015; Lind et al., 2018; Savolainen 
et al., 2007; Sork et al., 2013), a key underlying assumption of off-
set	models	 (Capblancq	 et	 al.,	2020;	 Láruson	 et	 al.,	2022; Rellstab 
et al., 2021). Trees are also relevant systems for understanding mal-
adaptation to future climate because of their ecological role in ter-
restrial	systems,	as	well	as	their	capacity	to	sequester	carbon.	Many	
forest	tree	species	have	experienced	large	geographic	range	shifts	
in	the	past	in	response	to	changes	in	climate	(Davis	&	Shaw,	2001; 
Hamrick, 2004). Yet, rates of projected climate change are likely 
to	 outpace	 maximum	 rates	 of	 historical	 migration	 and	 genetic	
changes	for	many	of	these	species	(e.g.,	Dauphin	et	al.,	2021;	Davis	
& Shaw, 2001; McLachlan et al., 2005) and therefore leave future 
outcomes	largely	unknown	(Alberto	et	al.,	2013;	Allen	et	al.,	2010; 
Mckenney et al., 2007; Millar et al., 2007).

Here,	we	train	offset	models	using	exome	capture	pool-	seq	data	
from	three	conifer	taxa	(Figure 1) and validate results with pheno-
types	from	independent	transplant	experiments	at	seedling	(2-	year	
Douglas-	fir,	Pseudotsuga menziesii)	and	adult	(52-	year	jack	pine,	Pinus 
banksiana)	 life	stages.	Using	fitness-	related	phenotypes	from	juve-
nile life stages enables validation of projections for species where 
no	 longer	 term	phenotypic	 data	 exist	 (the	 situation	 for	most	 spe-
cies), while validation using phenotypes from adult life stages en-
ables comparison of offset to more direct measures of total lifetime 
fitness. The main goal of this study is to use empirical datasets for 
widespread species known to be locally adapted to climate to eval-
uate	potential	consequences	of	decisions	made	during	training	and	
validation. Specifically, we use these datasets to address four main 
questions:	 Q1:	 How	 is	 the	 performance	 of	 the	 offset	 method	 af-
fected by the source of training loci? Q2: How do genomic offsets 
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    |  3 of 19LIND et al.

F I G U R E  1 North	American	source	populations	(circles)	used	for	genomic	and	phenotypic	data	to	train	and	validate	both	Gradient	Forests	
(GF)	and	the	risk	of	non-	adaptedness	(RONA),	and	the	common	gardens	used	for	offset	validation:	(a)	Douglas-	fir	and	(b)	jack	pine.	Shaded	
polygons	are	range	maps	for	the	full	range	of	coastal	Douglas-	fir	[lime,	(a)],	the	northern	and	central	range	of	interior	Douglas-	fir	[purple,	(a)],	
and	the	southern	range	of	jack	pine	[green,	(b)].	All	Douglas-	fir	populations	were	grown	in	the	Vancouver	common	garden	[white	diamond,	
(a)]	and	used	for	validation.	Jack	pine	populations	outlined	in	black	were	used	for	validation	in	both	the	Sainte-	Christine	[yellow	diamond,	
(b)]	and	Fontbrune	[red	diamond,	(b)]	common	gardens,	while	those	outlined	in	yellow	were	only	used	for	validation	in	Sainte-	Christine,	
and those outlined in white were only used in model training but not validation. Color of population indicates the genetic groups used for 
visualization.	Code	to	generate	these	figures	can	be	found	in	SN	15.99.
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compare	 with	 non-	genomic	 offset	 measures	 of	 climate	 and	 geo-
graphic distance? Q3: How are inferences from models affected by 
the populations used for validation?

2  |  METHODS

Throughout this manuscript, we will be referencing our code used 
to	 carry	 out	 specific	 analyses	 in-	line	with	 the	 text,	most	 often	 in	
unstripped jupyter notebooks (Kluyver et al., 2016). We refer to 
these	 notebooks	 as	 Supplemental	 Notebooks	 (SN)	 using	 a	 direc-
tory	 numbering	 system	 (e.g.,	 SN	 15.01).	 More	 information	 about	
the numbering system and archiving can be found in the Supporting 
Information S1.11.

2.1  |  Focal species, population sampling, and 
genetic data

Three	 taxa	 of	 conifers	 across	 two	 species	 (Figure 1) were used 
to	 assess	 the	 accuracy	 of	 genomic	 offset	 methods:	 (1)	 38	 range-	
wide	populations	of	 coastal	Douglas-	fir	 (Pseudotsuga menziesii var. 
menziesii	 [Mirb.]	 Franco,	 Pinaceae),	 (2)	 35	 populations	 of	 interior	
Douglas-	fir	(P. menziesii var. glauca) from the variety's northern and 
central	range,	and	(3)	39	jack	pine	(Pinus banksiana Lamb., Pinaceae) 
populations	from	across	the	species'	southern	range.	Douglas-	fir	is	
a common and often dominant species in many temperate forests 
across	western	North	America,	from	Mexico	to	Canada,	can	reach	
exceptional	 sizes,	 and	 produces	 high-	quality	 wood.	 Jack	 pine	 is	 a	
relatively	small	tree	common	in	North	American	boreal	forests,	with	
a	large	range	from	British	Columbia	in	the	west	to	the	Atlantic	in	the	
east, harvested for lower value wood and fiber. We chose these spe-
cies for their large and environmentally heterogeneous distributions, 
economic importance, and ecological relevance. Furthermore, there 
is	 extensive	 evidence	 for	 local	 adaptation	 to	 climate	 in	 both	 vari-
eties	of	Douglas-	fir	 (Bansal,	Clair,	 et	 al.,	2015; Bansal, Harrington, 
et al., 2015; Krueger & Ferrell, 1965; Rehfeldt et al., 2014) as well 
as jack pine (Eckert et al., 2012; Rehfeldt et al., 1999, 2001; Wang, 
Hamann, et al., 2006; Wu & Ying, 2004).

We	 used	 exome	 capture	 pool-	seq	 data	 from	 these	 sampled	
populations.	 Briefly,	 exome	 capture	 probes	 were	 designed	 using	
high-	quality	transcriptomic	data	targeting	exon	regions	in	reference	
genomes (Lind et al., 2022).	The	final	capture	probe	size	was	41 Mbp	
for	jack	pine	and	39 Mbp	for	Douglas-	fir	and,	respectively,	recovered	
93%	and	86%	of	the	1375	orthologs	in	the	Benchmarking	Universal	
Single	Copy	Orthologues	(BUSCO:	v3.0).	DNA	was	extracted	from	
33	 to	 40	 individuals	 per	 population	 for	 Douglas-	fir	 (39 Mbp	 cap-
ture probe size), and 17–20 individuals per population for jack pine 
(41 Mbp	capture	probe	size)	using	exome	capture	probes	described	
in Lind et al. (2022), where individuals within populations were 
pooled	in	equimolar	quantities	before	sequencing.	The	sequencing	
depths	used	here	exceed	those	used	in	Lind	et	al.	(2022), as it was 
found	 that	 pool-	seq	 depth	was	 one	 of	 the	 best	 predictors	 of	 the	

agreement	of	allele	frequencies	between	sequence	data	for	individ-
uals	and	those	from	pool-	seq	data,	despite	generally	strong	agree-
ment overall (Pearson's r > .948;	Lind	et	al.,	2022).

Pool-	seq	libraries	were	sequenced	in	a	150 bp	paired-	end	format	
on	an	 Illumina	HiSeq4000	 instrument	at	 the	Centre	d'expertise	et	
de Services Génome Québec, Montréal, Canada. We mapped reads 
from	both	varieties	of	Douglas-	fir	to	the	current	reference	genome	
of	coastal	Douglas-	fir	v1.01	(Neale	et	al.,	2017). We mapped reads 
from jack pine to an amended version of its congener, loblolly pine 
(Neale	et	al.,	2014; Wegrzyn et al., 2014;	Zimin	et	al.,	2014) (P. taeda 
L.,	Pinaceae	v2.01).	In	short,	we	used	transcriptomic	data	from	jack	
pine	and	amended	non-	mapping	transcripts	to	the	loblolly	reference	
before	mapping	pool-	seq	data.	Because	conifer	reference	genomes	
are	 highly	 fragmented	 and	 may	 have	 missing	 sequences,	 adding	
non-	mapping	 transcripts	ensured	higher	mapping	 rates	of	 Illumina	
sequence	reads	to	amended	reference	genomes.

Single	 nucleotide	 polymorphisms	 (SNPs)	 were	 called	 inde-
pendently	 for	Douglas-	fir	and	 jack	pine	according	to	bioinformatic	
best practices as detailed in Lind et al. (2022) using a VarScan 
pipeline (Lind, 2021) and filtered for missing data across popula-
tions	≤25%,	minimum	read	depth	per	population	per	locus	≥8,	and	
global	minor	allele	frequency	≥0.05.	Paralogs	can	lead	to	erroneous	
SNP	 calls	 due	 to	misalignment	 to	 a	 reference	 genome	 (McKinney	
et al., 2017; Rellstab et al., 2019).	As	in	Lind	et	al.	(2022), these loci 
were	also	filtered	with	the	VarScan	pipeline	using	SNPs	called	from	
haploid megagametophyte tissue (see Lind et al., 2022 for more de-
tails).	In	addition	to	the	SNP	sets	for	each	taxon,	we	also	created	a	
fourth	“cross-	variety”	SNP	set	by	combining	the	unfiltered	data	from	
both varieties and applying the same filtering process as for the sin-
gle	variety	datasets	such	as	read	depth,	missing	data,	and	MAF	(SN	
02.01.01).

To address Q1, we use two methods for identifying genotype–
environment	association	 (GEA)	candidates	 to	ensure	 that	genomic	
offset performance was not solely the outcome of the chosen 
method, as well as random sets of loci with numbers matching those 
of candidate sets to ensure that the source of loci was also not af-
fecting the outcome. BayPass (Gautier, 2015)	is	a	single-	locus	GEA	
that	evaluates	support	 for	each	SNP	 independently	 for	each	envi-
ronmental	 variable.	We	 also	 use	 GEA	 results	 from	 the	Weighted	
Z	Analysis	 (WZA,	Booker	et	al.,	2023).	The	WZA	uses	 information	
across closely linked loci within genomic windows (here genic re-
gions)	 to	 assess	GEA	 support	 at	 the	window	 level	 for	 a	 given	 en-
vironmental	 variable.	We	 performed	GEA	 analyses	 using	 BayPass	
and	 WZA	 at	 the	 variety	 level	 for	 Douglas-	fir	 (see	 SN	 subfolder	
02.02)	and	the	species	level	for	jack	pine	(see	SN	subfolder	07.02).	
For	BayPass,	we	 identified	all	SNPs	across	all	19	climatic	variables	
(Table S2)	with	Bayes	Factor	(BF)	in	deciban	units	(dB)	≥15	following	
Jeffrey's rule indicating, at minimum, very strong support (Table 1; 
see Supporting Information S1.9 for more details about BayPass 
implementation).	From	the	WZA	output,	we	identified	the	top	500	
genes	 associated	 with	 each	 of	 the	 19	 climatic	 variables	 using	 p-	
values	 from	 the	WZA.	From	within	 these	gene	windows,	we	kept	
only	those	SNPs	that	had	a	Kendall's	τ ≥ 0.5,	which	was	calculated	by	
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correlating	the	population-	level	allele	frequencies	with	environmen-
tal values for each locus (Table 1).	When	using	 the	 “cross-	variety”	
SNPs	filtered	jointly	across	both	Douglas-	fir	varieties,	we	used	the	
intersection	of	loci	between	(1)	those	that	passed	cross-	variety	fil-
tering	and	(2)	those	that	were	also	GEA	hits	within	varieties	(i.e.,	we	
did	not	perform	GEA	across	both	varieties	together).	Hereafter,	the	
BayPass	and	WZA	marker	sets	are	also	referred	to	more	generally	as	
“candidate”	marker	sets.

Because we are interested in knowing how the input loci would 
affect	genomic	offset	methods	(Q1),	we	also	created	a	“random”	set	
of	 loci	 of	 equal	 sample	 size	 as	 each	 of	 the	 two	 candidate	 sets	 by	
randomly	choosing	loci	across	our	full	datasets	(SN	15.04).	In	total,	
we	generated	four	sets	of	SNPs	for	each	of	the	three	conifer	taxa	to	
use in training (Table 1). The comparison of models using random and 
candidate	sets	addresses	questions	related	to	criteria	of	 input	 loci	
and its impact on model performance, and comparison among mod-
els	using	 the	 random	sets	of	 loci	 address	questions	 related	 to	 the	
impact of the number of input loci to model performance. For the 
main	text,	we	present	results	using	marker	sets	from	BayPass,	WZA,	
and	the	set	of	random	loci	with	same	sample	size	as	WZA,	and	pres-
ent all sets together within Supporting	Information. We used sets of 
random markers in this way because of computational constraints, 
as opposed to creating many sets of random markers sampled with 
replacement (see e.g., Fitzpatrick et al., 2021).	For	estimating	RONA	
(Rellstab et al., 2016), we used a subset of each of these marker 
sets so that only loci with significant linear models were included in 
RONA	calculations	(see	Section	2.3; Table 1).

2.2  |  Training and predicting offset with 
Gradient Forests

Gradient Forests is a machine learning algorithm that incorporates 
Random Forest ensemble learning by using climate to split nodes 
of	allele	frequencies	for	a	given	locus	 in	a	forest	of	decision	trees,	
and uses this splitting information to construct monotonic turnover 
functions which are in turn aggregated and used to predict offset to 
future climate (Fitzpatrick & Keller, 2015). Random Forest ensem-
bles are known to handle correlated features (e.g., environmental 

variables) without causing overfitting (Géron, 2022; Raschka & 
Mirjalili, 2019),	and	Láruson	et	al.	(2022) found that correlated fea-
tures did not reduce the performance of GFoffset models often did 
not misidentify causal environments.

We used candidate and random marker sets (Section 2.1) to train 
GFoffset	(SN	15.04;	Ellis	et	al.,	2012; Smith et al., 2012) in R (v3.5.1; R 
Core Team, 2018). For each marker set, we created training sets that 
included all available populations (Table 2a,b).

The climate data used in training included climate normals from 
19	climatic	environmental	variables	between	the	years	1961	and	
1990	predating	much	of	the	recent	anthropogenic	warming,	down-
loaded from Adapt	West.	com	 on	 February	 5,	 2021	 (AdaptWest-	
Project, 2021);	 AdaptWest	 data	 are	 generated	 using	 ClimateNA	
(Wang et al., 2016). These climate variables include those related 
to	annual	 temperature	 (MAT,	MWMT,	MCMT,	TD),	30-	year	min-
imum	 (EMT)	 and	maximum	 (EXT)	 temperature	 extremes,	 annual	
precipitation	(MAP,	AHM,	Eref,	CMD),	and	the	seasonality	of	both	
temperature	(DD0,	DD5,	NFFD,	FFP,	bFFP,	eFFP)	and	precipitation	
(MSP,	SHM,	PAS;	see	Table S2 for climatic abbreviations and units). 
These variables were selected a priori based upon relevance to 
the species' biology and environmental variation across the spe-
cies'	ranges.	After	clipping	AdaptWest	climate	data	(SN	15.03)	to	
our	species	ranges	(SN	15.02)	using	range	maps	from	the	United	
States Geological Survey (Little, 1971), training sets and training 
scripts	 (SN	15.05)	were	 used	 to	 train	 the	models	 of	GFoffset	 (SN	
15.04 section 5).

Each trained GFoffset model was used to predict offset to the cli-
mate	 of	 one	 (Douglas-	fir)	 or	 two	 (jack	 pine)	 common	 gardens	 (SN	
15.07)	 using	 the	 script	 created	 in	 SN	15.05	 and	using	 the	 default	
linear	extrapolation.	The	climate	data	used	for	offset	prediction	(SN	
15.06)	were	the	average	climate	(obtained	from	ClimateNA	GUI	be-
tween	July	2	and	9,	2021,	Wang	et	al.,	2016; Table S2), of the com-
mon garden over the years in which the individuals were grown (see 
Section 2.5), and were treated as the novel (i.e., ‘future’) climate of 
each	population	in	offset	projections.	Thirty-	year	extreme	variables,	
such	as	EMT	and	EXT,	were	also	averaged	across	the	values	given	for	
the years grown in the common garden.

An	added	utility	of	GF	 is	 that	 it	 can	 identify	 climatic	 variables	
driving variation in genetic data, without the need to project offset 

TA B L E  1 Locus	counts	used	in	training	of	Gradient	Forests	(GFoffset)	and	the	risk	of	non-	adaptedness	(RONA)	for	each	set	of	populations	
used:	jack	pine,	across	both	varieties	of	Douglas-	fir	(cross-	variety),	coastal	Douglas-	fir	and	interior	Douglas-	fir.

Gradient Forests RONA

BayPass WZA BayPass randomb WZA randomw

Jack pine 22,635 8564 22,570 11,383 8563 4281

Cross-	variety 25,219 4810 24,687 22,857 4756 4337

Coastal 17,516 3770 17,433 9684 3766 2050

Interior 12,938 1787 12,262 5973 1787 873

Note:	Not	shown	are	redundant	counts	of	random	marker	sets	with	the	same	sample	size	as	the	BayPass	and	Weighted	Z	Analysis	(WZA)	sets	used	in	
GFoffset.	Marker	sets	used	for	RONA	are	subsets	of	those	used	in	GFoffset that had significant linear models with at least one environment. Subscript 
letters	b	and	w	refer	to	the	original	candidate	sets	(BayPass	and	WZA,	respectively)	used	to	determine	sample	sizes	for	random	marker	sets	used	in	
GFoffset	which	were	then	subset	to	form	the	counts	shown	for	RONA.	Code	used	to	create	this	table	can	be	found	in	SN	15.15.
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to future climates, particularly if offset is not the primary goal. 
Gradient Forests outputs ranked environmental importance after 
being trained. This has shown promise in identifying environmen-
tal	drivers	underlying	selection	when	using	simulated	data	(Láruson	
et al., 2022), even when there are multiple correlated environmental 
variables.	Using	the	candidate	and	random	marker	sets,	we	explore	
the	consistency	of	environmental	importance	ranks.	We	also	explore	
the consistency of environmental importance ranks between can-
didate and random marker sets that used all populations in training 
(SN	15.13).	We	found	 that	GF	was	 relatively	 insensitive	 to	marker	
and population input with regard to environmental importance 
(Supporting Information S1.3; Figures S5–S7).

2.3  |  Estimating the RONA

In	addition	to	GFoffset,	we	also	used	RONA	(Rellstab	et	al.,	2016) to 
estimate	genomic	offset.	The	offset	estimated	by	RONA	relies	on	
linear	 relationships	 between	 allele	 frequencies	 for	 candidate	 loci	
and climatic variables. This estimation is carried out in four steps: 
(1) identifying candidate loci putatively underlying adaptation to 
the	environment	(e.g.,	from	GEA),	(2)	subsetting	this	list	for	loci	that	
also	have	significant	linear	models	relating	allele	frequency	with	en-
vironmental variables, (3) using the current model of the linear re-
lationship	between	population	allele	 frequencies	and	environment	
to	 estimate	 the	 allele	 frequency	 for	 a	 single	 population	 in	 a	 new	
environment (e.g., a value from projected climate change or a com-
mon garden), and (4) averaging the absolute difference between cur-
rent	and	estimated	future	allele	frequencies	across	loci	for	a	given	

population	for	a	given	climatic	variable	(see	equation	and	figure	2	on	
p.	5913	of	Rellstab	et	al.,	2016).

Using the four marker sets described in Section 2.1 (two can-
didate sets and two random sets; Table 2a), we isolated loci with 
significant	 linear	 models	 relating	 current	 allele	 frequencies	 to	 cli-
mate variables (the same climate data used in GFoffset training in 
Section 2.2; Table S2),	then	calculated	RONA	for	each	population	and	
environmental	variable	(SN	15.09)	using	average	environmental	val-
ues for the years individuals were grown in the gardens (Section 2.5). 
We	grouped	population-	level	predictions	from	the	same	population	
training sets used for GFoffset (Table 2b).	 Because	RONA	 is	 calcu-
lated for a specific population and environmental variable, there is 
a	range	of	RONA	estimates	for	any	given	population,	and	thus,	the	
choice of environmental variables to consider for offset estimation 
could impact inferences regarding population performance in novel 
environments. To address this, Rellstab et al. (2016) used paired t-	
tests to determine which future environments were most different 
from their current state (n = 5),	taking	the	top	three	variables	after	
ranking p-	values	 to	use	 in	estimating	 the	 range	of	RONA.	For	our	
validation, the vector containing future environments (i.e., common 
gardens) would be constant for a given variable across populations. 
In	the	context	of	a	paired	t-	test,	 this	 is	somewhat	 intractable	with	
the test's null hypotheses that each vector in the pair is sampled 
from the same distribution, which could lead to biologically mean-
ingless	(yet	statistically	significant)	inference.	We	explored	groups	of	
environmental	variables	(see	next	section)	related	to	‘expert	choice’	
or those used in guiding seed sourcing in British Columbia. However, 
the top five environments from the original paired t-	test	 as	 de-
scribed above produced more accurate results (i.e., correct sign and 

TA B L E  2 Relationship	between	data	used	to	train	and	validate	genomic	offset	models.

(a) (b) (c)

Note:	Marker	sets	were	varied	to	understand	impact	of	marker	source	[(a),	Q1].	Populations	from	Douglas-	fir	and	jack	pine	were	used	to	create	four	
sets	of	training	populations	to	train	offset	models	(b).	Offset	models	were	validated	using	either	all	populations	used	in	training	or	subsets	of	these	
populations	[(c),	Q3];	lines	connecting	(b,	c)	indicate	which	population	subsets	in	(c)	were	used	to	validate	models	in	(b).	The	“*”	coastal	and	“**”	
interior	models	are	sometimes	referred	to	as	coastal-	only	or	interior-	only	models	for	readability.
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    |  7 of 19LIND et al.

higher magnitudes of Spearman's ρ) than any of the other groups of 
environments	(not	shown,	except	in	SN	15.09	section	8),	and	so	we	
present	the	range	of	RONA	using	these	top	five	environments	from	
ranked t-	test	p-	values.	Because	the	top	environments	isolated	in	this	
way are often highly correlated with each other, these top environ-
ments will also likely give correlated offset estimates and thus allow 
for	the	effective	estimation	of	one	RONA	offset	value.

2.4  |  Non- genomic offset measures

Could environmental data alone be used instead of genetic data 
for management decisions (Mahony et al., 2020)? To compare 
genomic	offsets	with	non-	genomic	offset	measures	of	climate	and	
geographic distance (Q2), we also estimated population offset by 
calculating geographic and climatic distances from the source pop-
ulations	to	the	common	garden	(SN	15.08).	To	calculate	geographic	
distance, we use the latitude and longitude of each population and 
garden to calculate distance via Vincenty's geodesic. To calculate 
climatic distance, we use the Mahalanobis distance for each popu-
lation centered on the common garden using the same climate data 
in training and prediction with GFoffset	and	RONA	(Sections	2.2 and 
2.3; Table S2).	We	explored	three	sets	of	environmental	variables	to	
estimate climate distance: (1) all geoclimatic variables (Table S2), (2) 
those	climate	variables	used	in	climate-	based	seed	transfer	(CBST)	
guidelines	for	British	Columbia	(O'Neill	et	al.,	2009)—mean annual 
temperature	 (MAT),	 mean	 coldest	 month	 temperature	 (MCMT),	
continentality	(TD),	mean	annual	precipitation	(MAP),	degree-	days	
above	 5°C	 (DD5),	 extreme	minimum	 temperature	 (EMT),	 and	 (3)	
climate variables identified in previous and independent recip-
rocal transplants not used here. For jack pine, we used the two 
climate variables from the transfer function used to best predict 
height of a sister species with which it readily hybridizes, lodgepole 
pine (P. contorta subsp. latifolia	Douglas,	Pinaceae)	(Wang,	Hamann,	
et al., 2006):	 MAT	 (>64%	 variance	 explained)	 and	 annual	 heat-	
moisture	index	[AHM;	where	ln(AHM)	explained	>6%	variance].	For	
Douglas-	fir,	we	used	three	variables	found	to	be	significant	predic-
tors in universal response functions of height and basal diameter 
for	a	large	multiple	common	garden	trial	of	North	American	popu-
lations from both varieties planted in Central Europe (Chakraborty 
et al., 2015):	MAT,	summer	heat-	moisture	index	(SHM),	and	TD.

2.5  |  Common garden data

The	 measurements	 of	 fitness-	related	 phenotypes	 from	 common	
gardens (diamonds, Figure 1) used to validate genomic offset pre-
dictions were obtained by phenotyping individuals from the same 
populations	 that	were	genotyped.	For	 jack	pine,	we	measured	52-	
year	adult	phenotypes	for	height,	diameter	at	breast	height	(DBH),	
and mortality in a field provenance trial at two sites, Fontbrune 
(LAT	46.959,	LONG	−75.698)	and	Sainte-	Christine-	d'Auvergne	(LAT	
46.819,	LONG	−71.888),	between	1966	and	2018.	For	Douglas-	fir,	

we	 measured	 2-	year	 seedling	 phenotypes—shoot	 biomass	 and	
height	 increment—grown	 in	 a	 Vancouver	 common	 garden	 (LAT	
49.257,	LONG	−123.250)	between	2018	and	2019).	For	each	com-
mon garden, we used the population mean phenotype to validate 
genomic offset (Section 2.6). For more information about pheno-
typic measurements, see Supporting Information S1.4.

2.6  |  Validating offset measures

Population mean phenotypes (Section 2.5)	were	used	as	a	proxy	for	fit-
ness by which to validate the genomic offsets predicted from GFoffset 
(SN	 15.11)	 and	 RONA	 (SN	 15.09),	 by	 correlating	 population	 mean	
phenotype with population offset, using Spearman's ρ as a validation 
score (Supporting Information S1.5). Spearman's ρ was used because 
we	do	not	necessarily	expect	linear	relationships	between	offset	and	
phenotypes	 and	wanted	 to	 explicitly	 test	 offsets	 in	 their	 ability	 to	
rank climate maladaptation, particularly given that offset and pheno-
types are not measured in the same units (Lotterhos et al., 2022).	 If	
genomic	offset	is	a	good	proxy	for	potential	maladaptation,	we	expect	
a negative relationship between offset and growth, and a positive re-
lationship between offset and mortality. For GFoffset models, we used 
all available offset estimates and phenotypes to calculate the valida-
tion	score.	We	validated	RONA	for	each	environmental	variable	that	
ranked within the top five environments that differed significantly 
(via t-	test	p-	values)	between	the	common	garden	and	climates	used	in	
training, calculating a validation score for each climate variable.

To determine if inference related to model performance was af-
fected by the populations used in validation (Q3), we leveraged genetic 
structure	within	and	across	the	two	varieties	of	Douglas-	fir	(Table 2c). 
These two varieties (coastal and interior; green and purple ranges, re-
spectively, in Figure 1a) diverged ~2.11 Mya	(Gugger	et	al.,	2010) and 
differ substantially both morphologically and ecologically. While the 
coastal variety shows little genetic grouping in principal component 
analysis and instead differentiates along a latitudinal cline, populations 
in	 the	 northern	 range	 of	 interior	 Douglas-	fir	 populations	 form	 two	
distinct genetic groups (Figure S1). This allowed us to address Q3 by 
calculating our validation score using various levels of genetic hierar-
chy (Table 2)—we used the offset predicted for either all or a subset 
of training populations to calculate validation scores. Specifically, we 
calculated validation scores across (1) populations from both varieties, 
(2) all interior variety populations, and (3) across populations from each 
of	 the	 northwestern	 and	 southeastern	 interior	 Douglas-	fir	 genetic	
subgroups (see Figure S1). We evaluate these hierarchical scenarios 
using the GFoffset models trained across both varieties as well as those 
trained	using	solely	the	interior	variety	(SN	15.11).

2.7  |  Projecting genomic offset to future climates

As	in	Section	2.2, we downloaded future climate scenarios from Adapt	
West. com	 (AdaptWest-	Project,	2021; Wang et al., 2016). We used 
GFoffset	and	RONA	models	trained	with	all	WZA	loci	to	project	future	
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genomic	offsets	to	future	climate	scenarios	(SN	15.07	and	SN	15.16,	
respectively). For future climate scenarios, we used representative 
concentration pathway (RCP) greenhouse concentration trajectories 
projected	 to	 the	 2050s	 and	 2080s:	 RCP4.5	 2050s,	 RCP4.5	 2080s,	
RCP8.5	2050s,	and	RCP8.5	2080s.	RCP4.5	and	RCP8.5	each	repre-
sent radiative forcing units (W/m2) and are, respectively, an intermedi-
ate scenario where emissions peak in the 2040s and then decline or 
continue to rise throughout the 21st Century (van Vuuren et al., 2011). 
As	with	 estimating	RONA	using	 common	gardens	 (Section	2.3), we 
identified the five environmental variables for which our sample popu-
lations differed the most between present and future climate scenar-
ios.	We	report	results	from	RCP8.5	2050s	in	the	main	text,	including	
Spearman's �	between	RONA	estimates	(SN	15.16),	GFoffset	(SN	15.18),	
and	between	estimates	from	both	RONA	and	GFoffset	(SN	15.16).

3  |  RESULTS

3.1  |  Validation of offset with fitness- related 
phenotypes

3.1.1  |  Jack	pine

The performance of both GFoffset	and	RONA	differed	between	the	
two	jack	pine	provenance	trials	validated	using	52-	year	phenotypes	
of	mean	DBH,	mean	height,	and	mortality	(Figure 2). Mortality often 
was	better	predicted	than	DBH	and	height.	Genomic	offset	predic-
tions	of	52-	year	mortality	were	not	demonstrably	better	than	those	
based	 on	 the	 best	 non-	genomic	 offset	measure	 at	 either	 location	
(Q2).	 Importantly,	 using	 candidate	 loci	 from	GEA	analyses	did	not	
improve predictive ability over randomly chosen loci for GFoffset (Q1; 
Figure 2).	For	RONA,	the	validation	scores	from	GEA	sets	tended	to	
have	similar	scores	as	random	loci	when	estimating	DBH	and	height,	
but scores from the two sets became more differentiated when esti-
mating mortality (Q3; Figure 2; Figure S8).

The	best	non-	genomic	offset	measure	varied	by	phenotype	and	
site, with low variation among validation scores for these metrics 
(Figure 2). While geographic distance performed better than climate 
distances for mortality (Figure 2a,b), climate distance tended to per-
form	better	for	DBH	and	height	(Figure 2c–f), but the set of climate 
variables used to calculate the best distance varied, and only once 
exceeded	the	scores	from	the	full	GFoffset models (Figure 2e).

3.1.2  |  Douglas-	fir

As	with	jack	pine,	genomic	offsets	estimated	using	random	loci	per-
formed	 equally	well	 as	GEA	 sets	 (Q1).	 Both	 the	 cross-	variety	 and	
coastal variety models from GFoffset	 and	 RONA	 substantially	 out-
performed	climate	and	geographic	distance	metrics	for	Douglas-	fir,	
though this was not the case for the interior variety (Q2, Figure 3; 
Extended	 Data	 Figure S1). The GFoffset	 and	 RONA	 models	 that	
were	trained	and	validated	across	both	varieties	of	Douglas-	fir	had	

the greatest validation scores across all comparisons (Figure 3a; 
Extended	 Data	 Figure S1a), achieving much higher performance 
than in jack pine (Figure 2). However, when models were trained 
and validated for each variety separately the relative performance 
decreased (Figure 3b,c;	Extended	Data	Figure S1b,c). The stronger 
validation	score	from	the	cross-	variety	model	validated	using	both	
varieties (e.g., Figure 3a) compared to the scores validated within 
varieties is likely driven by the substantial genetic structure of the 
two	 varieties,	 as	 varieties	 are	 distinct	when	 plotting	 cross-	variety	
offset	versus	phenotype	(Extended	Data	Figure S2).

Because management decisions are usually made at finer spatial 
scales than a species' range, we were interested in how well groups 
of	Douglas-	fir	populations	(i.e.,	varieties	or	genetic	groups)	would	
validate, and if performance across all populations was indicative 
of	performance	at	 these	 finer	 spatial	 scales	 (Q3).	Assessing	per-
formance at finer scales and with fewer populations than used in 
model training is particularly relevant. For instance, genetic struc-
ture in the data could lead to magnitudes of Spearman's rho esti-
mates	 that	 could	 be	misinterpreted	 as	 a	well-	performing	model,	
when in fact the model is a poor predictor at scales of management 
relevance (see Supporting Information S1.10	 for	 a	 toy	 example).	
Comparing	models,	 the	 cross-	variety	model	 validated	using	only	
variety-	specific	populations	was	not	 substantially	different	 from	
models that were both trained and validated at the variety level 
(Figure 3b,c;	Extended	Data	Figure S1b,c). Comparing the two va-
rieties, the coastal variety models had greater validation scores 
than models for the interior variety (Figure 3b,c;	Extended	Data	
Figure S1b,c). Coastal variety genomic offsets often performed 
better	than	non-	genomic	offset	measures,	but	genomic	and	non-	
genomic offsets performed similarly for the interior variety (Q2, 
center panels Figure 3;	Extended	Data	Figure S1).	To	further	ex-
plore	impacts	on	the	accuracy	of	fine-	scale	offset,	we	subset	pop-
ulations from the interior variety into two distinct genetic groups 
to validate predictions from the GFoffset	cross-	variety	and	interior-	
only	models.	We	found	similar	patterns	of	accuracy	between	fine-	
scale	 validation	 of	 the	 cross-	variety	 and	 interior-	only	 genomic	
offset	models,	though	fine-	scale	validation	indicated	stronger	re-
lationships between offset and performance within these genetic 
groups than at the variety level (Supporting Information S1.6).

Validation scores from climate distance using variables inferred 
as important from independent provenance trials were often stron-
ger than the other climate distance measures (Figure 3;	 Extended	
Data	Figure S1), while validation scores from geographic distance 
were	stronger	than	climate	distance	only	in	interior	Douglas-	fir	pop-
ulations (Figures S9 and S10).

3.2  |  Predicted genomic offset to future climates

3.2.1  |  Jack	pine

Potential maladaptation of jack pine populations to future climate 
(RCP8.5	 2050s)	 inferred	 from	 GFoffset	 and	 RONA	 models	 trained	
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    |  9 of 19LIND et al.

using	WZA	loci	and	all	populations	indicate	that	the	western-	most	
group (green populations, Figure 1b) relative to all other populations 
are	likely	to	experience	the	greatest	maladaptive	effects	from	chang-
ing climates (Figure S11b,c). These populations have consistently 
high maladaptive ranks across both GFoffset	 and	RONA	 (Figure 4). 
From the projection of GFoffset to areas of the jack pine range with no 
training data, it would seem that the central portion of the range will 
be similarly maladapted to future climate (red contours, Figure S12d). 
Across	the	five	environmental	variables	used	to	estimate	RONA	for	
this climate scenario (which were highly correlated, Figure S11e,f), 

the	 predicted	maladaptive	 rank	 from	RONA	was	 positively	 corre-
lated with GFoffset (Figure S11c,d).

3.2.2  |  Douglas-	fir

Gradient	Forest	models	predicting	offset	to	future	climates	(RCP8.5	
2050s)	using	WZA	loci	gave	inconsistent	results	as	to	which	set	of	
Douglas-	fir	populations	were	projected	to	be	most	maladapted	to	
new climates (Figure 5).	For	 the	coastal	variety,	 the	cross-	variety	

F I G U R E  2 Offset	validation	from	52-	year	jack	pine	phenotypes	at	Sainte-	Christine-	d'Auvergne	(a,	c,	e)	and	Fontbrune	(b,	d,	f)	provenance	
trials using Gradient Forests (GFoffset),	the	risk	of	non-	adaptedness	(RONA),	and	climate	and	geographic	distances.	Triangles	indicate	the	
performance of GFoffset	models	trained	and	validated	using	all	available	populations.	RONA	background	boxplots	illustrate	the	range	of	
RONA	validation	scores	given	for	the	top	five	environmental	variables	(hexagons)	that	differed	significantly	between	source	and	common	
garden variables (see Table S1).	Climate	distances	(squares)	were	calculated	using	(1)	all	climate	variables,	or	(2)	those	variables	used	for	
climate-	based	seed	transfer	(CBST)	in	British	Columbia,	or	(3)	those	explaining	significant	variation	in	provenance	trials.	Vertical	bars	indicate	
standard error estimated using a Fisher transformation (see Supporting Information S1.3).	Loci	used	in	RONA	calculations	are	a	subset	of	
those used in GFoffset that had significant linear models with the environment, see Table S1	for	loci	counts.	Boxplot	whiskers	extend	up	to	
1.5×	the	interquartile	range.	See	Extended	Data	Figure	S3	for	a	conceptual	representation	of	training	and	validation	sources.	Code	to	create	
these	figures	can	be	found	in	SN	15.14.
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10 of 19  |     LIND et al.

model	 and	 the	 coastal-	only	model	 of	GFoffset each identified the 
same two populations from coastal BC to be the least maladap-
ted, but rank changed considerably among the remaining popula-
tions (Figure 5a).	For	the	interior	variety,	the	cross-	variety	and	the	
interior-	only	model	results	conflicted	as	to	whether	the	northwest-
ern genetic group (Figure S1) or the southeastern genetic group 
would be more maladapted (compare Figure 5c and 5d), whereas 
these models agreed when projecting offset to the common garden 

(Supporting Information S1.7; Figures S13–S15). For the north-
western	interior	genetic	group,	results	from	the	cross-	variety	and	
interior-	only	models	were	generally	similar,	except	that	the	popula-
tion	identified	as	the	least	maladapted	with	the	cross-	variety	model	
was	the	most	maladapted	from	the	interior-	only	model	(Figure 5e). 
For the southeastern interior genetic group, there was a nega-
tive relationship between offset predicted by the two models 
(Figure 5f).

F I G U R E  3 Offset	validation	from	2-	year	Douglas-	fir	height	increment	phenotypes	at	the	Vancouver	common	garden	(see	Figure 1a) using 
Gradient Forests (GFoffset),	the	risk	of	non-	adaptedness	(RONA),	and	climate	and	geographic	distances.	We	assessed	accuracy	inference	
from trained models (x-	axis	groups)	using	populations	(rows)	across	both	varieties	of	Douglas-	fir	(a),	at	the	variety	level	for	the	coastal	(b)	and	
interior	varieties	of	Douglas-	fir	(c)	to	determine	if	greater	numbers	of	training	populations	improve	finer	scale	predictions	of	offset.	Genetic	
offset	boxplots	and	shapes	are	shaded	with	respect	to	marker	set	source.	Triangles	indicate	the	performance	of	GFoffset models trained and 
validated	using	all	available	populations.	RONA	background	boxplots	illustrate	the	range	of	RONA	validation	scores	given	for	the	top	five	
climatic	variables	(hexagons)	that	differed	significantly	between	source	population	and	the	common	garden	(see	Table S1). Climate distances 
(squares)	were	calculated	using	(1)	all	climate	variables,	or	(2)	those	variables	used	for	climate-	based	seed	transfer	(CBST)	in	British	Columbia,	
or	(3)	those	explaining	significant	variation	in	provenance	trials.	Vertical	bars	indicate	standard	error	estimated	using	a	Fisher	transformation	
(see Supporting Information S1.3).	Loci	used	in	RONA	calculations	are	a	subset	of	those	used	in	Gradient	Forests	that	had	significant	linear	
models with the environment, see Table S1	for	locus	counts.	See	Extended	Data	Figure S1 for similar validation using shoot biomass. See 
Figure S9	for	all	locus	groups.	Boxplot	whiskers	extend	up	to	1.5×	the	interquartile	range.	See	Extended	Data	Figure	S3	for	a	conceptual	
representation	of	training	and	validation	sources.	Code	to	create	these	figures	can	be	found	in	SN	15.14.
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    |  11 of 19LIND et al.

F I G U R E  4 Maladaptation	of	jack	pine	populations	to	future	climate	(RCP8.5	2050s)	inferred	from	Gradient	Forests	[GFoffset,	(a,	c)]	and	
RONA	(b,	c).	Population	point	sizes	in	(a,	b)	are	scaled	to	offset	rank	(lowest	offset	have	smallest	sizes).	Population	point	sizes	in	(b)	are	from	
the	median	ranks	across	environments	used	to	estimate	RONA,	which	were	chosen	based	on	ranking	p-	values	from	paired	t- tests between 
current	and	future	climate.	In	(c),	a	1:1	line	is	given	to	infer	relative	changes	in	rank	between	methods.	Rank	numbers	are	given	within	circles	
of (a, b). Colors correspond to groups of Figure 1.	Code	to	create	these	figures	can	be	found	in	SN	15.17.	To	see	populations	overlaid	onto	a	
GFoffset model interpolated across the species range see Figure S12.
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12 of 19  |     LIND et al.

F I G U R E  5 Maladaptation	of	Douglas-	fir	populations	to	future	climate	(RCP8.5	2050s)	inferred	from	Gradient	Forests	(GFoffset) is 
inconsistent	between	models	trained	using	both	varieties	with	those	trained	on	a	variety-	specific	basis.	Shown	are	projected	offsets	
to	the	range	of	Douglas-	fir	trained	using	WZA	candidates	and	all	populations	from	(b)	the	coastal	variety,	(c)	both	varieties,	and	(d)	the	
interior	variety.	For	coastal	Douglas-	fir	(a)	and	the	two	subvariety	genetic	groups	of	interior	Douglas-	fir	(e,	f),	the	relationship	between	the	
magnitude	and	rank	of	projected	offset	using	the	cross-	variety	model	(pentagons,	y-	axes)	is	contrasted	to	those	from	the	variety-	specific	
model	(squares,	x-	axes).	Of	note,	the	cross-	variety	model	(c)	and	the	interior-	only	model	(d)	indicate	different	interior	variety	genetic	groups	
[populations	in	(e)	or	(f)]	to	be	most	maladapted	to	projected	climate.	Populations	are	colored	with	respect	to	Figure 1. Color legend is not 
standardized across (b–d) to accentuate patterns in the data (offset values are meaningless outside of the current model). Code used to 
create	these	figures	can	be	found	in	SN	15.18.	Analogous	figures	created	using	climate	models	RCP4.5	2080s,	RCP4.5	2050s,	and	RCP8.5	
2080s	show	similar	patterns	and	are	not	shown	except	within	SN	15.18.	To	see	populations	overlaid	onto	(b–d),	see	Figure S12.
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    |  13 of 19LIND et al.

The	 most	 maladapted	 interior	 Douglas-	fir	 genetic	 group	 pre-
dicted	from	RONA	was	also	inconsistent	between	the	cross-	variety	
and	 interior-	specific	 models	 (Figure S13b).	 However,	 RONA	 pre-
dictions were generally positively correlated for the interior va-
riety	and	cross-	variety	models	 for	 the	 two	 interior	genetic	groups	
(Figure S13c,d).	Predictions	from	the	cross-	variety	and	coastal-	only	
RONA	models	generally	had	positive,	albeit	relative	weak,	relation-
ships (Figure S13a).

To select among the models for projecting offsets to future 
climate	 for	 Douglas-	fir,	 we	 used	 three	 criteria	 when	 comparing	
cross-	variety	 and	 variety-	specific	 models:	 (1)	 validation	 scores,	
(2) agreement between future offsets from GFoffset	 and	 RONA,	
and	 (3)	 agreement	 among	 RONA	 future	 offsets	 (Supporting 
Information S1.8; Figures S16–S21). Based on these criteria, we 
use	the	cross-	variety	models	to	project	maladaptation	to	future	cli-
mate	(RCP8.5	2050s;	Figure 6).	For	coastal	Douglas-	fir,	many	pop-
ulations found along the Pacific Coast of California (orange) and 
Oregon	(blue)	had	the	greatest	projected	maladaptation	(Figure 6a). 
Populations	from	northwestern	interior	Douglas-	fir	near	the	Fraser	
River had consistently high offset ranks (red and magenta circles, 
Figure 6b), whereas the remaining populations had a wide range of 
projected risks, and it is unclear which would be most affected by fu-
ture	climate.	Finally,	populations	of	southeastern	interior	Douglas-	fir	
found	in	Idaho,	Montana,	and	eastern	Washington	and	Oregon	had	
consistently greater predicted maladaptation to future climate than 
those found in Southeastern British Columbia (Figure 6b).

4  |  DISCUSSION

Projections of maladaptation of populations to environmental change 
using genomic data, that is, genomic offset estimates, have remained 
largely unvalidated despite the recent increase in their use. Here, we 
use	three	taxa	of	conifers,	four	genomic	marker	sets,	and	common	
garden	phenotypes	 from	2-	year	Douglas-	fir	 and	52-	year	 jack	 pine	
individuals to demonstrate that genomic offset methods perform as 
well or better than the best climate or geographic distance metrics 
when	 predicting	 fitness-	related	 phenotypes	 in	 transplant	 experi-
ments (Q2, Figures 2 and 3;	Extended	Data	Figure S1). We also dem-
onstrate that candidate marker sets provide little advantage over 
random sets of loci (Q1). However, we find model performance at 
fine spatial scales was not representative of performance calculated 
range-	wide	(Q3,	Figures S9 and S10). Lastly, we find that when using 
future	climate	to	predict	offset,	the	set	of	Douglas-	fir	populations	in-
ferred to be most maladapted depends on the model used (compare 
within and across Figures 5 and 6; Figures S13 and S21). However, 
RONA	and	GFoffset results largely agree when projecting jack pine 
offset to future climates (Figure S11).	 In	 the	absence	of	validation	
data, and without further knowledge of the behavior and sensitivity 
of these genomic offset methods under a wider range of scenarios, 
it may therefore be difficult to determine whether a given set of 
populations can lead to reliable inferences about future maladapta-
tion. Together, these results suggest that acting on projections of 

maladaptation from genomic offset methods through changes to 
policy and management practices should be considered only after 
careful scrutiny of model performance, sensitivity, and generaliz-
ability. These findings also highlight the large knowledge gap with 
respect to the ideal population and dataset features needed to pro-
duce reliable genomic offset models.

4.1  |  Considerations for model construction, 
validation, and generalizability

The choice of data used to train genomic offset models, and its rela-
tionship	to	data	used	for	making	offset	predictions,	requires	careful	
consideration	and	extensive	exploration.	A	first	step	in	model	explo-
ration is to benchmark performance with other methods that could 
be	used	to	predict	maladaptation.	Our	results	mirror	other	studies	
(Fitzpatrick et al., 2021;	Láruson	et	al.,	2022) and suggest that ge-
netic data often contain more information regarding climate adapta-
tion than can be characterized with more readily accessible forms of 
data such as climate or geographic distance (Q2). This suggests that 
climate	distance	alone	is	unlikely	to	accurately	estimate	the	extent	of	
maladaptation of populations to future climate change.

Second, the source of inputs used to train models should be 
tested to understand how predictions are influenced by aspects of 
the	source	data.	In	our	analyses,	the	models	trained	using	GEA	can-
didate loci performed no better than those from models using ran-
dom	loci	(though	there	are	minor	exceptions	for	random	sets	used	
for	RONA,	Figures 2 and 3;	Extended	Data	Figure S1). This suggests 
it	 may	 be	 unnecessary	 to	 expend	 resources	 to	 identify	 adaptive	
genomic	 regions	when	 genome-		 or	 exome-	wide	 data	 exist	 (Q1),	 a	
finding consistent with previous evaluation of GFoffset (Fitzpatrick 
et al., 2021;	Láruson	et	al.,	2022). The similar performance among 
marker	sets	is	perhaps	due	to	the	nature	of	our	exome-	targeted	se-
quence	data	which	targeted	functionally	relevant	coding	regions.	It	
remains	to	be	seen	if	relatively	inexpensive	sequencing	techniques	
such	as	RAD-	seq,	which	more	often	tags	intergenic	regions	of	large	
genomes (Parchman et al., 2018), would perform as well as the ran-
dom marker sets used here. Even so, for species with strong local 
adaptation	 where	 isolation-	by-	environment	 drives	 spatial	 genetic	
structure,	signals	from	genotyping-	by-	sequencing	markers	may	con-
tain sufficient information for accurate offset projection and may 
therefore	be	a	cost-	effective	alternative	to	the	exome	capture	data	
used	here.	Other	input	sources	could	be	tested	as	well,	such	as	vary-
ing the climate period used in training during model selection.

Third, the phenotypes and environments used to validate off-
set models should be varied to understand how performance varies 
with	different	components	of	fitness	as	well	as	the	extent	to	which	
these	predictions	change	with	the	validation	environment.	For	ex-
ample, the contrast in the performance of these offset measures 
across the two jack pine provenance trial sites highlights the value 
of using multiple sources of validation in future work, and suggests 
that performance may vary with validation conditions (i.e., the ‘fu-
ture’	environment).	Future	studies	will	require	validation	to	provide	
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14 of 19  |     LIND et al.

F I G U R E  6 Maladaptation	of	interior	Douglas-	fir	to	future	climate	(RCP8.5	2050s)	inferred	from	Gradient	Forests	[GFoffset,	(a,	c)]	and	
RONA	(b,	c)	cross-	variety	models.	Population	point	sizes	in	(a,	b)	are	scaled	to	offset	rank	(lowest	offset	have	smallest	sizes).	Population	
point	sizes	in	(b)	are	from	the	median	ranks	across	environments	used	to	estimate	RONA,	which	were	chosen	based	on	ranking	p-	values	
from paired t- tests	between	current	and	future	climate.	In	(c),	a	1:1	line	is	given	to	infer	relative	changes	in	rank	between	methods.	Rank	
numbers are given within circles of (a, b). Populations are colored as in Figure 1.	Code	to	create	these	figures	can	be	found	in	SN	15.17.	For	
populations overlaid onto a GFoffset model interpolated across the species range, see Figure S12.
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    |  15 of 19LIND et al.

any	degree	of	 confidence	 in	 informing	population-		 or	 site-	specific	
management	 decisions.	 At	 a	minimum,	 they	will	 need	 to	 consider	
the	extent	to	which	the	phenotypes	and	life	stage	used	in	validation	
are associated with total lifetime fitness (Fitzpatrick et al., 2018), as 
well as how the common garden environment interacts with these 
phenotypes.	For	instance,	while	jack	pine	52-	year	DBH	may	capture	
elements of fitness related to growth, it may miss aspects of fitness 
more directly related to survival and reproduction. Size phenotypes 
such	as	DBH	may	also	be	more	 indicative	of	competitive	ability	 in	
the planted common garden environment than fitness in the wild. 
Carefully considering the phenotype used to validate model pre-
dictions can help avoid ambiguous situations where it is unclear if 
poor performance is due to the choice of validation phenotype or 
the model itself. Varying the validation environment will also incor-
porate uncertainty into predictions of maladaptation to climates that 
may differ from those used in validation.

Fourth, the populations used to validate offset models should 
be relevant to the scale at which management is applied (Q3). For 
instance,	 had	we	 chosen	 the	 cross-	variety	model	 to	 apply	 toward	
management	recommendations	in	Douglas-	fir,	but	not	assessed	per-
formance at finer spatial scales, we may have concluded that the 
validation	 score	 from	 the	 cross-	variety	model	 was	 indicative	 of	 a	
well-	performing	model	across	all	populations	from	both	the	interior	
and	coastal	varieties	of	Douglas-	fir.	However,	this	would	have	mis-
guided prioritization of populations within these groups, as the per-
formance	of	the	cross-	variety	model	decreased	at	the	more	relevant	
within-	variety	 level	 for	 coastal	 and	 interior	 of	 Douglas-	fir.	 Future	
sampling designs should take genetic structure into consideration 
and ensure that sampling is relevant to the scope of management 
within	 each	 genetic	 group.	 Studies	 should	 also	 explore	 the	 influ-
ence of highly diverged populations (e.g., those isolated from large 
contiguous ranges) in biasing model estimates. While it is important 
to consider differences between training and test data (see below), 
genetic and climatic differences among populations used in training 
should	also	be	explored	to	quantify	biases	 introduced	by	differen-
tiated	 input	 data,	 such	 as	 with	 leave-	one-	out	 sensitivity	 analyses	
(Géron, 2022; Lever et al., 2016; Lotterhos et al., 2022; Rellstab 
et al., 2021).

Fifth, the relationship between the data used in training and 
prediction must be assessed to understand model generalizability 
and therefore the ability to make predictions on novel conditions 
not seen in training. Understanding model generalizability is funda-
mental for using predictive models, and it is well known that many 
mathematical models may not predict well to novel conditions rela-
tive to data used in training (Géron, 2022; Lever et al., 2016; Raschka 
& Mirjalili, 2019), and this applies to genomic models as well (Fraslin 
et al., 2022;	Ma	&	Zhou,	2021; Rogers & Holland, 2021; Schrider 
& Kern, 2018; Wientjes et al., 2013). For the data used here, the 
transplant	sites	used	to	validate	models	for	coastal	Douglas-	fir	and	
jack pine were within the climate space of the training populations. 
However, the Vancouver common garden was well outside the cli-
mate	space	of	the	interior	Douglas-	fir	populations	(Figure S23) which 
had	the	poorest	performance	among	the	three	taxa	assessed.	While	

this observation could be due to weaker local adaptation in interior 
Douglas-	fir,	 it	may	 instead	 indicate	 that	projections	of	maladapta-
tion to future climates that differ greatly from climate data used in 
training may produce less robust estimates. With many marine and 
terrestrial	 environments	 in	 the	 mid-	21st	 century	 having	 no	 20th	
century climate analog (Lotterhos et al., 2021; Mahony et al., 2017), 
offset	methods	may	be	effective	only	for	short-	term	predictions.

4.2  |  Ignoring offset model assumptions may lead 
to misguided inference

Even with some promising results here, genomic offset estimates 
should be used with caution to guide management decisions, as 
there are circumstances under which these estimates may be mis-
leading with respect to true population maladaptation even under 
otherwise ideal circumstances (e.g., in the presence of local adapta-
tion).	In	addition	to	having	the	necessary	data	for	accurate	genomic	
offset predictions, not all species (or groups of populations) are 
ideally suited for these models. These models assume that current 
genotype–climate relationships are due solely to local adaptation 
and will remain optimal in the future, and that deviations from these 
relationships	will	result	in	decreased	fitness	(Capblancq	et	al.,	2020; 
Rellstab et al., 2021). Because these models assume that the change 
of the environment is immediate (Fitzpatrick & Keller, 2015;	Láruson	
et al., 2022), they also ignore other dynamics that could either allevi-
ate	or	exacerbate	maladaptation	experienced	by	future	populations,	
such	as	gene	flow	(and	perhaps	subsequent	swamping)	of	adaptive	
alleles, changes in competition or disease, or the redundancy in the 
genetic architecture underlying fitness and therefore the number 
of	 available	 routes	 to	 adaptation	 (Capblancq	et	 al.,	2020;	 Láruson	
et al., 2020; Rellstab et al., 2021). Because these factors could alter 
population trajectories between current and projected climate sce-
narios,	 offset	models	may	be	most	 accurate	 for	 short-	term	 in	 situ	
predictions,	or	 for	predictions	most	 relevant	 to	near-	term	assisted	
gene flow initiatives.

4.3  |  Future work is needed to identify the 
domain of offset applicability

There is still considerable uncertainty in the usefulness of genomic 
offset	methods	 for	 natural	 populations	 (Capblancq	 et	 al.,	2020; 
Láruson	et	al.,	2022; Rellstab et al., 2021).	 Investigators	are	 fur-
ther	 limited	when	applying	genomic	offsets	across	 taxa	because	
the domain of applicability—that is, the circumstances under which 
a method is acceptably accurate (Lotterhos et al., 2022)—remains 
largely undefined. For offset methods, these circumstances en-
compass the evolutionary history of targeted populations as well 
as	the	design	of	experiments	used	to	train	and	validate	the	model	
itself. Even with ideal data, offset inferences will be affected by 
both evolutionary factors (e.g., drift, pleiotropy, and the drivers 
and	strength	of	divergent	selection)	and	experimental	parameters	
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16 of 19  |     LIND et al.

(e.g.,	sampling	locations,	Láruson	et	al.,	2022). The circumstances 
under	which	we	should	expect	multiple	offset	methods	to	agree	
are also unclear, as they are likely to be affected to different de-
grees	for	any	given	set	of	experimental	and	evolutionary	param-
eters.	 For	 example,	 Láruson	 et	 al.	 (2022) highlight how genetic 
drift can mislead GFoffset magnitude and rank estimates. This may 
be	driving	some	patterns	observed	here,	for	example,	the	extent	
to	which	the	western-	most	group	of	jack	pine	is	inferred	to	be	the	
most maladapted to future climate change (Figure 4a; Figure S11) 
or	the	extent	to	which	the	cross-	variety	model	of	Douglas-	fir	 in-
fers the southeastern groups of the interior variety to be most 
maladapted as well (Figures 5c and 6b;	 S21.9).	 Because	 of	 this,	
we hesitate to recommend either GFoffset	or	RONA	over	the	other,	
given their similar performance as well as the uncertainty of how 
their	performance	may	differ	in	other	situations.	Instead,	we	rec-
ommend	 further	 exploration	 of	 their	 performance	 under	 a	wide	
variety	 of	 scenarios,	 as	 has	 been	 noted	 elsewhere	 (Capblancq	
et al., 2020; Rellstab et al., 2021).	A	more	detailed	understanding	
of	how	genomic	offset	methods	interact	with	complex	multivari-
ate	 selection,	 admixture,	 lesser	 degrees	 of	 (or	 variation	 in)	 local	
adaptation, and prediction to novel and strongly differentiated 
climates also warrant further attention.

4.4  |  Concluding remarks

Ultimately, defining the domain of applicability for genomic offset 
methods	 will	 likely	 require	 extensive	 evaluation	 of	 simulated	 and	
empirical data. Until such a domain is well defined, future work 
estimating	genomic	offsets	will	need	to	thoroughly	explore	the	re-
sults by varying input loci, climate data, populations used in training, 
and environments used for validation to understand how sensitive 
the offset estimations are to the data at hand as well as how gen-
eralizable these models are when predicting to novel data. Such 
exploration	 should	 follow	best	practices	 (Géron,	2022; Raschka & 
Mirjalili, 2019)	and	will	require	training	of	many	dozens	of	models	for	
a single dataset, which will provide ample targets for model selection 
and	 tuning.	Doing	 so	will	 lead	 to	 a	more	 complete	 understanding	
of the performance of these models, and the circumstances under 
which they will fail.

While our validation results show promise, our future projections 
for	Douglas-	fir	 show	ambiguous	 results	 (Figure 5c,d; Figure S13b). 
Because of this, we do not recommend using offset estimates to 
strongly	influence	prescriptions	to	guide	climate-	adaptive	manage-
ment practices for individual populations until these approaches are 
better	understood	and	validated.	It	therefore	may	be	more	prudent	
to work under the assumption that all populations are at some risk of 
maladaptation due to climate change. Even so, offset methods could 
guide	ex	 situ	conservation	collections	 to	capture	genetic	diversity	
from	populations	predicted	to	be	most	at	risk	of	climate-	related	ex-
tirpation,	for	example,	for	seed	banks	or	living	collections.	However,	
because	of	 the	expectation	 that	model	performance	will	 suffer	as	
the environments between training and predictions diverge, we 

strongly caution against implementing widespread management ac-
tions based on inferences from offset models projected to climates 
strongly differentiated from current conditions (e.g., projections 
beyond	several	decades).	While	our	offset	projections	for	Douglas-	
fir show ambiguity in model projections, monitoring populations 
for climate change responses could provide evidence that support 
one	projection	over	the	other	and	provide	additional	validation.	 In	
practice, there may be situations where the risks of inaction may 
outweigh risks associated with model uncertainty, and these could 
be weighed accordingly, particularly for threatened or endangered 
species.	Finally,	the	value	of	common	garden	experiments	for	evalu-
ating risk of maladaptation should not be underestimated.
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