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Abstract
Methods using genomic information to forecast potential population maladapta-
tion to climate change or new environments are becoming increasingly common, 
yet the lack of model validation poses serious hurdles toward their incorporation 
into management and policy. Here, we compare the validation of maladaptation 
estimates derived from two methods—Gradient Forests (GFoffset) and the risk of 
non-adaptedness (RONA)—using exome capture pool-seq data from 35 to 39 popu-
lations across three conifer taxa: two Douglas-fir varieties and jack pine. We evalu-
ate sensitivity of these algorithms to the source of input loci (markers selected 
from genotype–environment associations [GEA] or those selected at random). We 
validate these methods against 2- and 52-year growth and mortality measured in 
independent transplant experiments. Overall, we find that both methods often 
better predict transplant performance than climatic or geographic distances. We 
also find that GFoffset and RONA models are surprisingly not improved using GEA 
candidates. Even with promising validation results, variation in model projections 
to future climates makes it difficult to identify the most maladapted populations 
using either method. Our work advances understanding of the sensitivity and ap-
plicability of these approaches, and we discuss recommendations for their future 
use.
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1  |  INTRODUC TION

Environmental and land use change pose unprecedented risk to 
global biodiversity loss (Exposito-Alonso et  al.,  2022; Nadeau 
et  al.,  2017; Urban,  2015). Historically, the impacts of these 
changes on species' distributions have been projected through 
species distribution modeling (e.g., Thuiller et al., 2008). However, 
these methods often fail to account for the environmental drivers 
of local adaptation or the various evolutionary mechanisms (e.g., 
gene flow, phenotypic plasticity) by which populations could re-
spond to environmental change (O'Neill et  al.,  2008; Waldvogel 
et  al.,  2020). Recently, methods incorporating genomic informa-
tion to forecast climate maladaptation have increased in popular-
ity. Predominant among these, Gradient Forests (GFoffset, sensu 
Fitzpatrick & Keller, 2015) and the risk of non-adaptedness (RONA; 
Rellstab et al., 2016) use current relationships between genotype 
and climate to estimate genomic offset (i.e., a measure of maladap-
tation between a population's current or future environment and 
its environmental optimum; see Section 2). Often used to estimate 
maladaptation to future climate change, these offset methods can 
also incorporate nonclimatic environmental variables. If such offset 
methods were shown to be robust when estimating maladaptation 
to any future environmental factor, they could circumvent the need 
for long-term field experiments and could rapidly inform manage-
ment priorities, or provide an option for species where experimen-
tation is not feasible.

Despite their current popularity, genomic offset methods remain 
largely unvalidated with a few exceptions. For instance, Láruson 
et  al.  (2022) used simulated data to evaluate GFoffset. They found 
that when (1) climate and genotypes are known without error, (2) all 
populations across the simulated landscape are locally adapted, and 
(3) validation is carried out within the climate space used in train-
ing, the predicted offset had a strong negative rank correlation with 
simulated fitness, and GFoffset models trained using all markers per-
formed no better than GFoffset models trained using causal markers. 
Furthermore, they found that environmental distances calculated 
using environmental variables driving local adaptation also had a 
strong negative relationship with simulated fitness, though this was 
not the case when noncausal environments were included in dis-
tance calculations.

Compared to simulated data, attempts to validate GFoffset 
using empirical data where error is inherent have found relatively 
weaker relationships between GFoffset and juvenile performance 
measured in a common garden (Fitzpatrick et al., 2021). This sug-
gests that offset models may not perform as well in practice as they 
do under ideal circumstances. Even so, and similar to findings of 
Láruson et al. (2022), Fitzpatrick et al. (2021) also found GFoffset to 
be more accurate than naïve climate distances, further suggesting 
genomic offset methods of this and other types (e.g., Capblancq 
& Forester,  2021) provide advantages over climate data alone. 
However, the relatively weaker empirical performance than that 
found from simulation data may be improved with more direct mea-
sures of survival and reproduction.

In empirical settings, GFoffset models are often used to project 
offset to areas of the species' range where no populations have 
been sampled and to climates many decades into the future (e.g., 
Bay et al., 2018; Fitzpatrick & Keller, 2015; Gougherty et al., 2021; 
Lu et al., 2019; Vanhove et al., 2021). However, projection to unsam-
pled environments can lead to inaccuracies when models cannot 
generalize well. While generalizability poses one hurdle, it is unclear 
whether more accessible forms of data (e.g., climate or geographic 
distance) perform as well as these genetically based methods in all 
systems. Furthermore, offset implementations have used disparate 
sets and sample sizes of both populations and loci to project future 
offset to changing climates, without exploring the impact of these 
sources on model predictions (but see e.g., Fitzpatrick et al., 2021; 
Láruson et al., 2022).

Validating these methods' predictions of maladaptation to fu-
ture climate is challenging due to the temporal nature of such pro-
jections. However, transplant experiments (i.e., common gardens 
or provenance trials) can be used to quantify performance by cor-
relating measurements of fitness-related phenotypes with the off-
set projected to the contemporary climate of the growing site (Blois 
et al., 2013; Fitzpatrick et al., 2021).

Tree species are ideally suited to empirically validate predic-
tions from offset methods because there is abundant evidence from 
transplant experiments to suggest that many tree species are locally 
adapted to climate (Boshier et al., 2015; Lind et al., 2018; Savolainen 
et al., 2007; Sork et al., 2013), a key underlying assumption of off-
set models (Capblancq et  al.,  2020; Láruson et  al.,  2022; Rellstab 
et al., 2021). Trees are also relevant systems for understanding mal-
adaptation to future climate because of their ecological role in ter-
restrial systems, as well as their capacity to sequester carbon. Many 
forest tree species have experienced large geographic range shifts 
in the past in response to changes in climate (Davis & Shaw, 2001; 
Hamrick,  2004). Yet, rates of projected climate change are likely 
to outpace maximum rates of historical migration and genetic 
changes for many of these species (e.g., Dauphin et al., 2021; Davis 
& Shaw, 2001; McLachlan et al., 2005) and therefore leave future 
outcomes largely unknown (Alberto et al., 2013; Allen et al., 2010; 
Mckenney et al., 2007; Millar et al., 2007).

Here, we train offset models using exome capture pool-seq data 
from three conifer taxa (Figure 1) and validate results with pheno-
types from independent transplant experiments at seedling (2-year 
Douglas-fir, Pseudotsuga menziesii) and adult (52-year jack pine, Pinus 
banksiana) life stages. Using fitness-related phenotypes from juve-
nile life stages enables validation of projections for species where 
no longer term phenotypic data exist (the situation for most spe-
cies), while validation using phenotypes from adult life stages en-
ables comparison of offset to more direct measures of total lifetime 
fitness. The main goal of this study is to use empirical datasets for 
widespread species known to be locally adapted to climate to eval-
uate potential consequences of decisions made during training and 
validation. Specifically, we use these datasets to address four main 
questions: Q1: How is the performance of the offset method af-
fected by the source of training loci? Q2: How do genomic offsets 
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    |  3 of 19LIND et al.

F I G U R E  1 North American source populations (circles) used for genomic and phenotypic data to train and validate both Gradient Forests 
(GF) and the risk of non-adaptedness (RONA), and the common gardens used for offset validation: (a) Douglas-fir and (b) jack pine. Shaded 
polygons are range maps for the full range of coastal Douglas-fir [lime, (a)], the northern and central range of interior Douglas-fir [purple, (a)], 
and the southern range of jack pine [green, (b)]. All Douglas-fir populations were grown in the Vancouver common garden [white diamond, 
(a)] and used for validation. Jack pine populations outlined in black were used for validation in both the Sainte-Christine [yellow diamond, 
(b)] and Fontbrune [red diamond, (b)] common gardens, while those outlined in yellow were only used for validation in Sainte-Christine, 
and those outlined in white were only used in model training but not validation. Color of population indicates the genetic groups used for 
visualization. Code to generate these figures can be found in SN 15.99.
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compare with non-genomic offset measures of climate and geo-
graphic distance? Q3: How are inferences from models affected by 
the populations used for validation?

2  |  METHODS

Throughout this manuscript, we will be referencing our code used 
to carry out specific analyses in-line with the text, most often in 
unstripped jupyter notebooks (Kluyver et  al.,  2016). We refer to 
these notebooks as Supplemental Notebooks (SN) using a direc-
tory numbering system (e.g., SN 15.01). More information about 
the numbering system and archiving can be found in the Supporting 
Information S1.11.

2.1  |  Focal species, population sampling, and 
genetic data

Three taxa of conifers across two species (Figure  1) were used 
to assess the accuracy of genomic offset methods: (1) 38 range-
wide populations of coastal Douglas-fir (Pseudotsuga menziesii var. 
menziesii [Mirb.] Franco, Pinaceae), (2) 35 populations of interior 
Douglas-fir (P. menziesii var. glauca) from the variety's northern and 
central range, and (3) 39 jack pine (Pinus banksiana Lamb., Pinaceae) 
populations from across the species' southern range. Douglas-fir is 
a common and often dominant species in many temperate forests 
across western North America, from Mexico to Canada, can reach 
exceptional sizes, and produces high-quality wood. Jack pine is a 
relatively small tree common in North American boreal forests, with 
a large range from British Columbia in the west to the Atlantic in the 
east, harvested for lower value wood and fiber. We chose these spe-
cies for their large and environmentally heterogeneous distributions, 
economic importance, and ecological relevance. Furthermore, there 
is extensive evidence for local adaptation to climate in both vari-
eties of Douglas-fir (Bansal, Clair, et  al.,  2015; Bansal, Harrington, 
et al., 2015; Krueger & Ferrell, 1965; Rehfeldt et al., 2014) as well 
as jack pine (Eckert et al., 2012; Rehfeldt et al., 1999, 2001; Wang, 
Hamann, et al., 2006; Wu & Ying, 2004).

We used exome capture pool-seq data from these sampled 
populations. Briefly, exome capture probes were designed using 
high-quality transcriptomic data targeting exon regions in reference 
genomes (Lind et al., 2022). The final capture probe size was 41 Mbp 
for jack pine and 39 Mbp for Douglas-fir and, respectively, recovered 
93% and 86% of the 1375 orthologs in the Benchmarking Universal 
Single Copy Orthologues (BUSCO: v3.0). DNA was extracted from 
33 to 40 individuals per population for Douglas-fir (39 Mbp cap-
ture probe size), and 17–20 individuals per population for jack pine 
(41 Mbp capture probe size) using exome capture probes described 
in Lind et  al.  (2022), where individuals within populations were 
pooled in equimolar quantities before sequencing. The sequencing 
depths used here exceed those used in Lind et al. (2022), as it was 
found that pool-seq depth was one of the best predictors of the 

agreement of allele frequencies between sequence data for individ-
uals and those from pool-seq data, despite generally strong agree-
ment overall (Pearson's r > .948; Lind et al., 2022).

Pool-seq libraries were sequenced in a 150 bp paired-end format 
on an Illumina HiSeq4000 instrument at the Centre d'expertise et 
de Services Génome Québec, Montréal, Canada. We mapped reads 
from both varieties of Douglas-fir to the current reference genome 
of coastal Douglas-fir v1.01 (Neale et al., 2017). We mapped reads 
from jack pine to an amended version of its congener, loblolly pine 
(Neale et al., 2014; Wegrzyn et al., 2014; Zimin et al., 2014) (P. taeda 
L., Pinaceae v2.01). In short, we used transcriptomic data from jack 
pine and amended non-mapping transcripts to the loblolly reference 
before mapping pool-seq data. Because conifer reference genomes 
are highly fragmented and may have missing sequences, adding 
non-mapping transcripts ensured higher mapping rates of Illumina 
sequence reads to amended reference genomes.

Single nucleotide polymorphisms (SNPs) were called inde-
pendently for Douglas-fir and jack pine according to bioinformatic 
best practices as detailed in Lind et  al.  (2022) using a VarScan 
pipeline (Lind,  2021) and filtered for missing data across popula-
tions ≤25%, minimum read depth per population per locus ≥8, and 
global minor allele frequency ≥0.05. Paralogs can lead to erroneous 
SNP calls due to misalignment to a reference genome (McKinney 
et al., 2017; Rellstab et al., 2019). As in Lind et al. (2022), these loci 
were also filtered with the VarScan pipeline using SNPs called from 
haploid megagametophyte tissue (see Lind et al., 2022 for more de-
tails). In addition to the SNP sets for each taxon, we also created a 
fourth “cross-variety” SNP set by combining the unfiltered data from 
both varieties and applying the same filtering process as for the sin-
gle variety datasets such as read depth, missing data, and MAF (SN 
02.01.01).

To address Q1, we use two methods for identifying genotype–
environment association (GEA) candidates to ensure that genomic 
offset performance was not solely the outcome of the chosen 
method, as well as random sets of loci with numbers matching those 
of candidate sets to ensure that the source of loci was also not af-
fecting the outcome. BayPass (Gautier, 2015) is a single-locus GEA 
that evaluates support for each SNP independently for each envi-
ronmental variable. We also use GEA results from the Weighted 
Z Analysis (WZA, Booker et al., 2023). The WZA uses information 
across closely linked loci within genomic windows (here genic re-
gions) to assess GEA support at the window level for a given en-
vironmental variable. We performed GEA analyses using BayPass 
and WZA at the variety level for Douglas-fir (see SN subfolder 
02.02) and the species level for jack pine (see SN subfolder 07.02). 
For BayPass, we identified all SNPs across all 19 climatic variables 
(Table S2) with Bayes Factor (BF) in deciban units (dB) ≥15 following 
Jeffrey's rule indicating, at minimum, very strong support (Table 1; 
see Supporting Information  S1.9 for more details about BayPass 
implementation). From the WZA output, we identified the top 500 
genes associated with each of the 19 climatic variables using p-
values from the WZA. From within these gene windows, we kept 
only those SNPs that had a Kendall's τ ≥ 0.5, which was calculated by 
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correlating the population-level allele frequencies with environmen-
tal values for each locus (Table 1). When using the “cross-variety” 
SNPs filtered jointly across both Douglas-fir varieties, we used the 
intersection of loci between (1) those that passed cross-variety fil-
tering and (2) those that were also GEA hits within varieties (i.e., we 
did not perform GEA across both varieties together). Hereafter, the 
BayPass and WZA marker sets are also referred to more generally as 
“candidate” marker sets.

Because we are interested in knowing how the input loci would 
affect genomic offset methods (Q1), we also created a “random” set 
of loci of equal sample size as each of the two candidate sets by 
randomly choosing loci across our full datasets (SN 15.04). In total, 
we generated four sets of SNPs for each of the three conifer taxa to 
use in training (Table 1). The comparison of models using random and 
candidate sets addresses questions related to criteria of input loci 
and its impact on model performance, and comparison among mod-
els using the random sets of loci address questions related to the 
impact of the number of input loci to model performance. For the 
main text, we present results using marker sets from BayPass, WZA, 
and the set of random loci with same sample size as WZA, and pres-
ent all sets together within Supporting Information. We used sets of 
random markers in this way because of computational constraints, 
as opposed to creating many sets of random markers sampled with 
replacement (see e.g., Fitzpatrick et al., 2021). For estimating RONA 
(Rellstab et  al.,  2016), we used a subset of each of these marker 
sets so that only loci with significant linear models were included in 
RONA calculations (see Section 2.3; Table 1).

2.2  |  Training and predicting offset with 
Gradient Forests

Gradient Forests is a machine learning algorithm that incorporates 
Random Forest ensemble learning by using climate to split nodes 
of allele frequencies for a given locus in a forest of decision trees, 
and uses this splitting information to construct monotonic turnover 
functions which are in turn aggregated and used to predict offset to 
future climate (Fitzpatrick & Keller, 2015). Random Forest ensem-
bles are known to handle correlated features (e.g., environmental 

variables) without causing overfitting (Géron,  2022; Raschka & 
Mirjalili, 2019), and Láruson et al. (2022) found that correlated fea-
tures did not reduce the performance of GFoffset models often did 
not misidentify causal environments.

We used candidate and random marker sets (Section 2.1) to train 
GFoffset (SN 15.04; Ellis et al., 2012; Smith et al., 2012) in R (v3.5.1; R 
Core Team, 2018). For each marker set, we created training sets that 
included all available populations (Table 2a,b).

The climate data used in training included climate normals from 
19 climatic environmental variables between the years 1961 and 
1990 predating much of the recent anthropogenic warming, down-
loaded from Adapt​West.​com on February 5, 2021 (AdaptWest-
Project,  2021); AdaptWest data are generated using ClimateNA 
(Wang et al., 2016). These climate variables include those related 
to annual temperature (MAT, MWMT, MCMT, TD), 30-year min-
imum (EMT) and maximum (EXT) temperature extremes, annual 
precipitation (MAP, AHM, Eref, CMD), and the seasonality of both 
temperature (DD0, DD5, NFFD, FFP, bFFP, eFFP) and precipitation 
(MSP, SHM, PAS; see Table S2 for climatic abbreviations and units). 
These variables were selected a priori based upon relevance to 
the species' biology and environmental variation across the spe-
cies' ranges. After clipping AdaptWest climate data (SN 15.03) to 
our species ranges (SN 15.02) using range maps from the United 
States Geological Survey (Little, 1971), training sets and training 
scripts (SN 15.05) were used to train the models of GFoffset (SN 
15.04 section 5).

Each trained GFoffset model was used to predict offset to the cli-
mate of one (Douglas-fir) or two (jack pine) common gardens (SN 
15.07) using the script created in SN 15.05 and using the default 
linear extrapolation. The climate data used for offset prediction (SN 
15.06) were the average climate (obtained from ClimateNA GUI be-
tween July 2 and 9, 2021, Wang et al., 2016; Table S2), of the com-
mon garden over the years in which the individuals were grown (see 
Section 2.5), and were treated as the novel (i.e., ‘future’) climate of 
each population in offset projections. Thirty-year extreme variables, 
such as EMT and EXT, were also averaged across the values given for 
the years grown in the common garden.

An added utility of GF is that it can identify climatic variables 
driving variation in genetic data, without the need to project offset 

TA B L E  1 Locus counts used in training of Gradient Forests (GFoffset) and the risk of non-adaptedness (RONA) for each set of populations 
used: jack pine, across both varieties of Douglas-fir (cross-variety), coastal Douglas-fir and interior Douglas-fir.

Gradient Forests RONA

BayPass WZA BayPass randomb WZA randomw

Jack pine 22,635 8564 22,570 11,383 8563 4281

Cross-variety 25,219 4810 24,687 22,857 4756 4337

Coastal 17,516 3770 17,433 9684 3766 2050

Interior 12,938 1787 12,262 5973 1787 873

Note: Not shown are redundant counts of random marker sets with the same sample size as the BayPass and Weighted Z Analysis (WZA) sets used in 
GFoffset. Marker sets used for RONA are subsets of those used in GFoffset that had significant linear models with at least one environment. Subscript 
letters b and w refer to the original candidate sets (BayPass and WZA, respectively) used to determine sample sizes for random marker sets used in 
GFoffset which were then subset to form the counts shown for RONA. Code used to create this table can be found in SN 15.15.
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to future climates, particularly if offset is not the primary goal. 
Gradient Forests outputs ranked environmental importance after 
being trained. This has shown promise in identifying environmen-
tal drivers underlying selection when using simulated data (Láruson 
et al., 2022), even when there are multiple correlated environmental 
variables. Using the candidate and random marker sets, we explore 
the consistency of environmental importance ranks. We also explore 
the consistency of environmental importance ranks between can-
didate and random marker sets that used all populations in training 
(SN 15.13). We found that GF was relatively insensitive to marker 
and population input with regard to environmental importance 
(Supporting Information S1.3; Figures S5–S7).

2.3  |  Estimating the RONA

In addition to GFoffset, we also used RONA (Rellstab et al., 2016) to 
estimate genomic offset. The offset estimated by RONA relies on 
linear relationships between allele frequencies for candidate loci 
and climatic variables. This estimation is carried out in four steps: 
(1) identifying candidate loci putatively underlying adaptation to 
the environment (e.g., from GEA), (2) subsetting this list for loci that 
also have significant linear models relating allele frequency with en-
vironmental variables, (3) using the current model of the linear re-
lationship between population allele frequencies and environment 
to estimate the allele frequency for a single population in a new 
environment (e.g., a value from projected climate change or a com-
mon garden), and (4) averaging the absolute difference between cur-
rent and estimated future allele frequencies across loci for a given 

population for a given climatic variable (see equation and figure 2 on 
p. 5913 of Rellstab et al., 2016).

Using the four marker sets described in Section  2.1 (two can-
didate sets and two random sets; Table  2a), we isolated loci with 
significant linear models relating current allele frequencies to cli-
mate variables (the same climate data used in GFoffset training in 
Section 2.2; Table S2), then calculated RONA for each population and 
environmental variable (SN 15.09) using average environmental val-
ues for the years individuals were grown in the gardens (Section 2.5). 
We grouped population-level predictions from the same population 
training sets used for GFoffset (Table  2b). Because RONA is calcu-
lated for a specific population and environmental variable, there is 
a range of RONA estimates for any given population, and thus, the 
choice of environmental variables to consider for offset estimation 
could impact inferences regarding population performance in novel 
environments. To address this, Rellstab et al.  (2016) used paired t-
tests to determine which future environments were most different 
from their current state (n = 5), taking the top three variables after 
ranking p-values to use in estimating the range of RONA. For our 
validation, the vector containing future environments (i.e., common 
gardens) would be constant for a given variable across populations. 
In the context of a paired t-test, this is somewhat intractable with 
the test's null hypotheses that each vector in the pair is sampled 
from the same distribution, which could lead to biologically mean-
ingless (yet statistically significant) inference. We explored groups of 
environmental variables (see next section) related to ‘expert choice’ 
or those used in guiding seed sourcing in British Columbia. However, 
the top five environments from the original paired t-test as de-
scribed above produced more accurate results (i.e., correct sign and 

TA B L E  2 Relationship between data used to train and validate genomic offset models.

(a) (b) (c)

Note: Marker sets were varied to understand impact of marker source [(a), Q1]. Populations from Douglas-fir and jack pine were used to create four 
sets of training populations to train offset models (b). Offset models were validated using either all populations used in training or subsets of these 
populations [(c), Q3]; lines connecting (b, c) indicate which population subsets in (c) were used to validate models in (b). The “*” coastal and “**” 
interior models are sometimes referred to as coastal-only or interior-only models for readability.
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    |  7 of 19LIND et al.

higher magnitudes of Spearman's ρ) than any of the other groups of 
environments (not shown, except in SN 15.09 section 8), and so we 
present the range of RONA using these top five environments from 
ranked t-test p-values. Because the top environments isolated in this 
way are often highly correlated with each other, these top environ-
ments will also likely give correlated offset estimates and thus allow 
for the effective estimation of one RONA offset value.

2.4  |  Non-genomic offset measures

Could environmental data alone be used instead of genetic data 
for management decisions (Mahony et  al.,  2020)? To compare 
genomic offsets with non-genomic offset measures of climate and 
geographic distance (Q2), we also estimated population offset by 
calculating geographic and climatic distances from the source pop-
ulations to the common garden (SN 15.08). To calculate geographic 
distance, we use the latitude and longitude of each population and 
garden to calculate distance via Vincenty's geodesic. To calculate 
climatic distance, we use the Mahalanobis distance for each popu-
lation centered on the common garden using the same climate data 
in training and prediction with GFoffset and RONA (Sections 2.2 and 
2.3; Table S2). We explored three sets of environmental variables to 
estimate climate distance: (1) all geoclimatic variables (Table S2), (2) 
those climate variables used in climate-based seed transfer (CBST) 
guidelines for British Columbia (O'Neill et al., 2009)—mean annual 
temperature (MAT), mean coldest month temperature (MCMT), 
continentality (TD), mean annual precipitation (MAP), degree-days 
above 5°C (DD5), extreme minimum temperature (EMT), and (3) 
climate variables identified in previous and independent recip-
rocal transplants not used here. For jack pine, we used the two 
climate variables from the transfer function used to best predict 
height of a sister species with which it readily hybridizes, lodgepole 
pine (P. contorta subsp. latifolia Douglas, Pinaceae) (Wang, Hamann, 
et  al.,  2006): MAT (>64% variance explained) and annual heat-
moisture index [AHM; where ln(AHM) explained >6% variance]. For 
Douglas-fir, we used three variables found to be significant predic-
tors in universal response functions of height and basal diameter 
for a large multiple common garden trial of North American popu-
lations from both varieties planted in Central Europe (Chakraborty 
et al., 2015): MAT, summer heat-moisture index (SHM), and TD.

2.5  |  Common garden data

The measurements of fitness-related phenotypes from common 
gardens (diamonds, Figure 1) used to validate genomic offset pre-
dictions were obtained by phenotyping individuals from the same 
populations that were genotyped. For jack pine, we measured 52-
year adult phenotypes for height, diameter at breast height (DBH), 
and mortality in a field provenance trial at two sites, Fontbrune 
(LAT 46.959, LONG −75.698) and Sainte-Christine-d'Auvergne (LAT 
46.819, LONG −71.888), between 1966 and 2018. For Douglas-fir, 

we measured 2-year seedling phenotypes—shoot biomass and 
height increment—grown in a Vancouver common garden (LAT 
49.257, LONG −123.250) between 2018 and 2019). For each com-
mon garden, we used the population mean phenotype to validate 
genomic offset (Section  2.6). For more information about pheno-
typic measurements, see Supporting Information S1.4.

2.6  |  Validating offset measures

Population mean phenotypes (Section 2.5) were used as a proxy for fit-
ness by which to validate the genomic offsets predicted from GFoffset 
(SN 15.11) and RONA (SN 15.09), by correlating population mean 
phenotype with population offset, using Spearman's ρ as a validation 
score (Supporting Information S1.5). Spearman's ρ was used because 
we do not necessarily expect linear relationships between offset and 
phenotypes and wanted to explicitly test offsets in their ability to 
rank climate maladaptation, particularly given that offset and pheno-
types are not measured in the same units (Lotterhos et al., 2022). If 
genomic offset is a good proxy for potential maladaptation, we expect 
a negative relationship between offset and growth, and a positive re-
lationship between offset and mortality. For GFoffset models, we used 
all available offset estimates and phenotypes to calculate the valida-
tion score. We validated RONA for each environmental variable that 
ranked within the top five environments that differed significantly 
(via t-test p-values) between the common garden and climates used in 
training, calculating a validation score for each climate variable.

To determine if inference related to model performance was af-
fected by the populations used in validation (Q3), we leveraged genetic 
structure within and across the two varieties of Douglas-fir (Table 2c). 
These two varieties (coastal and interior; green and purple ranges, re-
spectively, in Figure 1a) diverged ~2.11 Mya (Gugger et al., 2010) and 
differ substantially both morphologically and ecologically. While the 
coastal variety shows little genetic grouping in principal component 
analysis and instead differentiates along a latitudinal cline, populations 
in the northern range of interior Douglas-fir populations form two 
distinct genetic groups (Figure S1). This allowed us to address Q3 by 
calculating our validation score using various levels of genetic hierar-
chy (Table 2)—we used the offset predicted for either all or a subset 
of training populations to calculate validation scores. Specifically, we 
calculated validation scores across (1) populations from both varieties, 
(2) all interior variety populations, and (3) across populations from each 
of the northwestern and southeastern interior Douglas-fir genetic 
subgroups (see Figure  S1). We evaluate these hierarchical scenarios 
using the GFoffset models trained across both varieties as well as those 
trained using solely the interior variety (SN 15.11).

2.7  |  Projecting genomic offset to future climates

As in Section 2.2, we downloaded future climate scenarios from Adapt​
West.​com (AdaptWest-Project,  2021; Wang et  al.,  2016). We used 
GFoffset and RONA models trained with all WZA loci to project future 
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genomic offsets to future climate scenarios (SN 15.07 and SN 15.16, 
respectively). For future climate scenarios, we used representative 
concentration pathway (RCP) greenhouse concentration trajectories 
projected to the 2050s and 2080s: RCP4.5 2050s, RCP4.5 2080s, 
RCP8.5 2050s, and RCP8.5 2080s. RCP4.5 and RCP8.5 each repre-
sent radiative forcing units (W/m2) and are, respectively, an intermedi-
ate scenario where emissions peak in the 2040s and then decline or 
continue to rise throughout the 21st Century (van Vuuren et al., 2011). 
As with estimating RONA using common gardens (Section 2.3), we 
identified the five environmental variables for which our sample popu-
lations differed the most between present and future climate scenar-
ios. We report results from RCP8.5 2050s in the main text, including 
Spearman's � between RONA estimates (SN 15.16), GFoffset (SN 15.18), 
and between estimates from both RONA and GFoffset (SN 15.16).

3  |  RESULTS

3.1  |  Validation of offset with fitness-related 
phenotypes

3.1.1  |  Jack pine

The performance of both GFoffset and RONA differed between the 
two jack pine provenance trials validated using 52-year phenotypes 
of mean DBH, mean height, and mortality (Figure 2). Mortality often 
was better predicted than DBH and height. Genomic offset predic-
tions of 52-year mortality were not demonstrably better than those 
based on the best non-genomic offset measure at either location 
(Q2). Importantly, using candidate loci from GEA analyses did not 
improve predictive ability over randomly chosen loci for GFoffset (Q1; 
Figure 2). For RONA, the validation scores from GEA sets tended to 
have similar scores as random loci when estimating DBH and height, 
but scores from the two sets became more differentiated when esti-
mating mortality (Q3; Figure 2; Figure S8).

The best non-genomic offset measure varied by phenotype and 
site, with low variation among validation scores for these metrics 
(Figure 2). While geographic distance performed better than climate 
distances for mortality (Figure 2a,b), climate distance tended to per-
form better for DBH and height (Figure 2c–f), but the set of climate 
variables used to calculate the best distance varied, and only once 
exceeded the scores from the full GFoffset models (Figure 2e).

3.1.2  |  Douglas-fir

As with jack pine, genomic offsets estimated using random loci per-
formed equally well as GEA sets (Q1). Both the cross-variety and 
coastal variety models from GFoffset and RONA substantially out-
performed climate and geographic distance metrics for Douglas-fir, 
though this was not the case for the interior variety (Q2, Figure 3; 
Extended Data Figure  S1). The GFoffset and RONA models that 
were trained and validated across both varieties of Douglas-fir had 

the greatest validation scores across all comparisons (Figure  3a; 
Extended Data Figure  S1a), achieving much higher performance 
than in jack pine (Figure  2). However, when models were trained 
and validated for each variety separately the relative performance 
decreased (Figure 3b,c; Extended Data Figure S1b,c). The stronger 
validation score from the cross-variety model validated using both 
varieties (e.g., Figure  3a) compared to the scores validated within 
varieties is likely driven by the substantial genetic structure of the 
two varieties, as varieties are distinct when plotting cross-variety 
offset versus phenotype (Extended Data Figure S2).

Because management decisions are usually made at finer spatial 
scales than a species' range, we were interested in how well groups 
of Douglas-fir populations (i.e., varieties or genetic groups) would 
validate, and if performance across all populations was indicative 
of performance at these finer spatial scales (Q3). Assessing per-
formance at finer scales and with fewer populations than used in 
model training is particularly relevant. For instance, genetic struc-
ture in the data could lead to magnitudes of Spearman's rho esti-
mates that could be misinterpreted as a well-performing model, 
when in fact the model is a poor predictor at scales of management 
relevance (see Supporting Information  S1.10 for a toy example). 
Comparing models, the cross-variety model validated using only 
variety-specific populations was not substantially different from 
models that were both trained and validated at the variety level 
(Figure 3b,c; Extended Data Figure S1b,c). Comparing the two va-
rieties, the coastal variety models had greater validation scores 
than models for the interior variety (Figure 3b,c; Extended Data 
Figure  S1b,c). Coastal variety genomic offsets often performed 
better than non-genomic offset measures, but genomic and non-
genomic offsets performed similarly for the interior variety (Q2, 
center panels Figure 3; Extended Data Figure S1). To further ex-
plore impacts on the accuracy of fine-scale offset, we subset pop-
ulations from the interior variety into two distinct genetic groups 
to validate predictions from the GFoffset cross-variety and interior-
only models. We found similar patterns of accuracy between fine-
scale validation of the cross-variety and interior-only genomic 
offset models, though fine-scale validation indicated stronger re-
lationships between offset and performance within these genetic 
groups than at the variety level (Supporting Information S1.6).

Validation scores from climate distance using variables inferred 
as important from independent provenance trials were often stron-
ger than the other climate distance measures (Figure  3; Extended 
Data Figure  S1), while validation scores from geographic distance 
were stronger than climate distance only in interior Douglas-fir pop-
ulations (Figures S9 and S10).

3.2  |  Predicted genomic offset to future climates

3.2.1  |  Jack pine

Potential maladaptation of jack pine populations to future climate 
(RCP8.5 2050s) inferred from GFoffset and RONA models trained 
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    |  9 of 19LIND et al.

using WZA loci and all populations indicate that the western-most 
group (green populations, Figure 1b) relative to all other populations 
are likely to experience the greatest maladaptive effects from chang-
ing climates (Figure  S11b,c). These populations have consistently 
high maladaptive ranks across both GFoffset and RONA (Figure  4). 
From the projection of GFoffset to areas of the jack pine range with no 
training data, it would seem that the central portion of the range will 
be similarly maladapted to future climate (red contours, Figure S12d). 
Across the five environmental variables used to estimate RONA for 
this climate scenario (which were highly correlated, Figure S11e,f), 

the predicted maladaptive rank from RONA was positively corre-
lated with GFoffset (Figure S11c,d).

3.2.2  |  Douglas-fir

Gradient Forest models predicting offset to future climates (RCP8.5 
2050s) using WZA loci gave inconsistent results as to which set of 
Douglas-fir populations were projected to be most maladapted to 
new climates (Figure 5). For the coastal variety, the cross-variety 

F I G U R E  2 Offset validation from 52-year jack pine phenotypes at Sainte-Christine-d'Auvergne (a, c, e) and Fontbrune (b, d, f) provenance 
trials using Gradient Forests (GFoffset), the risk of non-adaptedness (RONA), and climate and geographic distances. Triangles indicate the 
performance of GFoffset models trained and validated using all available populations. RONA background boxplots illustrate the range of 
RONA validation scores given for the top five environmental variables (hexagons) that differed significantly between source and common 
garden variables (see Table S1). Climate distances (squares) were calculated using (1) all climate variables, or (2) those variables used for 
climate-based seed transfer (CBST) in British Columbia, or (3) those explaining significant variation in provenance trials. Vertical bars indicate 
standard error estimated using a Fisher transformation (see Supporting Information S1.3). Loci used in RONA calculations are a subset of 
those used in GFoffset that had significant linear models with the environment, see Table S1 for loci counts. Boxplot whiskers extend up to 
1.5× the interquartile range. See Extended Data Figure S3 for a conceptual representation of training and validation sources. Code to create 
these figures can be found in SN 15.14.
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10 of 19  |     LIND et al.

model and the coastal-only model of GFoffset each identified the 
same two populations from coastal BC to be the least maladap-
ted, but rank changed considerably among the remaining popula-
tions (Figure 5a). For the interior variety, the cross-variety and the 
interior-only model results conflicted as to whether the northwest-
ern genetic group (Figure  S1) or the southeastern genetic group 
would be more maladapted (compare Figure 5c and 5d), whereas 
these models agreed when projecting offset to the common garden 

(Supporting Information  S1.7; Figures  S13–S15). For the north-
western interior genetic group, results from the cross-variety and 
interior-only models were generally similar, except that the popula-
tion identified as the least maladapted with the cross-variety model 
was the most maladapted from the interior-only model (Figure 5e). 
For the southeastern interior genetic group, there was a nega-
tive relationship between offset predicted by the two models 
(Figure 5f).

F I G U R E  3 Offset validation from 2-year Douglas-fir height increment phenotypes at the Vancouver common garden (see Figure 1a) using 
Gradient Forests (GFoffset), the risk of non-adaptedness (RONA), and climate and geographic distances. We assessed accuracy inference 
from trained models (x-axis groups) using populations (rows) across both varieties of Douglas-fir (a), at the variety level for the coastal (b) and 
interior varieties of Douglas-fir (c) to determine if greater numbers of training populations improve finer scale predictions of offset. Genetic 
offset boxplots and shapes are shaded with respect to marker set source. Triangles indicate the performance of GFoffset models trained and 
validated using all available populations. RONA background boxplots illustrate the range of RONA validation scores given for the top five 
climatic variables (hexagons) that differed significantly between source population and the common garden (see Table S1). Climate distances 
(squares) were calculated using (1) all climate variables, or (2) those variables used for climate-based seed transfer (CBST) in British Columbia, 
or (3) those explaining significant variation in provenance trials. Vertical bars indicate standard error estimated using a Fisher transformation 
(see Supporting Information S1.3). Loci used in RONA calculations are a subset of those used in Gradient Forests that had significant linear 
models with the environment, see Table S1 for locus counts. See Extended Data Figure S1 for similar validation using shoot biomass. See 
Figure S9 for all locus groups. Boxplot whiskers extend up to 1.5× the interquartile range. See Extended Data Figure S3 for a conceptual 
representation of training and validation sources. Code to create these figures can be found in SN 15.14.
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    |  11 of 19LIND et al.

F I G U R E  4 Maladaptation of jack pine populations to future climate (RCP8.5 2050s) inferred from Gradient Forests [GFoffset, (a, c)] and 
RONA (b, c). Population point sizes in (a, b) are scaled to offset rank (lowest offset have smallest sizes). Population point sizes in (b) are from 
the median ranks across environments used to estimate RONA, which were chosen based on ranking p-values from paired t-tests between 
current and future climate. In (c), a 1:1 line is given to infer relative changes in rank between methods. Rank numbers are given within circles 
of (a, b). Colors correspond to groups of Figure 1. Code to create these figures can be found in SN 15.17. To see populations overlaid onto a 
GFoffset model interpolated across the species range see Figure S12.
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12 of 19  |     LIND et al.

F I G U R E  5 Maladaptation of Douglas-fir populations to future climate (RCP8.5 2050s) inferred from Gradient Forests (GFoffset) is 
inconsistent between models trained using both varieties with those trained on a variety-specific basis. Shown are projected offsets 
to the range of Douglas-fir trained using WZA candidates and all populations from (b) the coastal variety, (c) both varieties, and (d) the 
interior variety. For coastal Douglas-fir (a) and the two subvariety genetic groups of interior Douglas-fir (e, f), the relationship between the 
magnitude and rank of projected offset using the cross-variety model (pentagons, y-axes) is contrasted to those from the variety-specific 
model (squares, x-axes). Of note, the cross-variety model (c) and the interior-only model (d) indicate different interior variety genetic groups 
[populations in (e) or (f)] to be most maladapted to projected climate. Populations are colored with respect to Figure 1. Color legend is not 
standardized across (b–d) to accentuate patterns in the data (offset values are meaningless outside of the current model). Code used to 
create these figures can be found in SN 15.18. Analogous figures created using climate models RCP4.5 2080s, RCP4.5 2050s, and RCP8.5 
2080s show similar patterns and are not shown except within SN 15.18. To see populations overlaid onto (b–d), see Figure S12.
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    |  13 of 19LIND et al.

The most maladapted interior Douglas-fir genetic group pre-
dicted from RONA was also inconsistent between the cross-variety 
and interior-specific models (Figure  S13b). However, RONA pre-
dictions were generally positively correlated for the interior va-
riety and cross-variety models for the two interior genetic groups 
(Figure S13c,d). Predictions from the cross-variety and coastal-only 
RONA models generally had positive, albeit relative weak, relation-
ships (Figure S13a).

To select among the models for projecting offsets to future 
climate for Douglas-fir, we used three criteria when comparing 
cross-variety and variety-specific models: (1) validation scores, 
(2) agreement between future offsets from GFoffset and RONA, 
and (3) agreement among RONA future offsets (Supporting 
Information  S1.8; Figures  S16–S21). Based on these criteria, we 
use the cross-variety models to project maladaptation to future cli-
mate (RCP8.5 2050s; Figure 6). For coastal Douglas-fir, many pop-
ulations found along the Pacific Coast of California (orange) and 
Oregon (blue) had the greatest projected maladaptation (Figure 6a). 
Populations from northwestern interior Douglas-fir near the Fraser 
River had consistently high offset ranks (red and magenta circles, 
Figure 6b), whereas the remaining populations had a wide range of 
projected risks, and it is unclear which would be most affected by fu-
ture climate. Finally, populations of southeastern interior Douglas-fir 
found in Idaho, Montana, and eastern Washington and Oregon had 
consistently greater predicted maladaptation to future climate than 
those found in Southeastern British Columbia (Figure 6b).

4  |  DISCUSSION

Projections of maladaptation of populations to environmental change 
using genomic data, that is, genomic offset estimates, have remained 
largely unvalidated despite the recent increase in their use. Here, we 
use three taxa of conifers, four genomic marker sets, and common 
garden phenotypes from 2-year Douglas-fir and 52-year jack pine 
individuals to demonstrate that genomic offset methods perform as 
well or better than the best climate or geographic distance metrics 
when predicting fitness-related phenotypes in transplant experi-
ments (Q2, Figures 2 and 3; Extended Data Figure S1). We also dem-
onstrate that candidate marker sets provide little advantage over 
random sets of loci (Q1). However, we find model performance at 
fine spatial scales was not representative of performance calculated 
range-wide (Q3, Figures S9 and S10). Lastly, we find that when using 
future climate to predict offset, the set of Douglas-fir populations in-
ferred to be most maladapted depends on the model used (compare 
within and across Figures 5 and 6; Figures S13 and S21). However, 
RONA and GFoffset results largely agree when projecting jack pine 
offset to future climates (Figure S11). In the absence of validation 
data, and without further knowledge of the behavior and sensitivity 
of these genomic offset methods under a wider range of scenarios, 
it may therefore be difficult to determine whether a given set of 
populations can lead to reliable inferences about future maladapta-
tion. Together, these results suggest that acting on projections of 

maladaptation from genomic offset methods through changes to 
policy and management practices should be considered only after 
careful scrutiny of model performance, sensitivity, and generaliz-
ability. These findings also highlight the large knowledge gap with 
respect to the ideal population and dataset features needed to pro-
duce reliable genomic offset models.

4.1  |  Considerations for model construction, 
validation, and generalizability

The choice of data used to train genomic offset models, and its rela-
tionship to data used for making offset predictions, requires careful 
consideration and extensive exploration. A first step in model explo-
ration is to benchmark performance with other methods that could 
be used to predict maladaptation. Our results mirror other studies 
(Fitzpatrick et al., 2021; Láruson et al., 2022) and suggest that ge-
netic data often contain more information regarding climate adapta-
tion than can be characterized with more readily accessible forms of 
data such as climate or geographic distance (Q2). This suggests that 
climate distance alone is unlikely to accurately estimate the extent of 
maladaptation of populations to future climate change.

Second, the source of inputs used to train models should be 
tested to understand how predictions are influenced by aspects of 
the source data. In our analyses, the models trained using GEA can-
didate loci performed no better than those from models using ran-
dom loci (though there are minor exceptions for random sets used 
for RONA, Figures 2 and 3; Extended Data Figure S1). This suggests 
it may be unnecessary to expend resources to identify adaptive 
genomic regions when genome-  or exome-wide data exist (Q1), a 
finding consistent with previous evaluation of GFoffset (Fitzpatrick 
et al., 2021; Láruson et al., 2022). The similar performance among 
marker sets is perhaps due to the nature of our exome-targeted se-
quence data which targeted functionally relevant coding regions. It 
remains to be seen if relatively inexpensive sequencing techniques 
such as RAD-seq, which more often tags intergenic regions of large 
genomes (Parchman et al., 2018), would perform as well as the ran-
dom marker sets used here. Even so, for species with strong local 
adaptation where isolation-by-environment drives spatial genetic 
structure, signals from genotyping-by-sequencing markers may con-
tain sufficient information for accurate offset projection and may 
therefore be a cost-effective alternative to the exome capture data 
used here. Other input sources could be tested as well, such as vary-
ing the climate period used in training during model selection.

Third, the phenotypes and environments used to validate off-
set models should be varied to understand how performance varies 
with different components of fitness as well as the extent to which 
these predictions change with the validation environment. For ex-
ample, the contrast in the performance of these offset measures 
across the two jack pine provenance trial sites highlights the value 
of using multiple sources of validation in future work, and suggests 
that performance may vary with validation conditions (i.e., the ‘fu-
ture’ environment). Future studies will require validation to provide 
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F I G U R E  6 Maladaptation of interior Douglas-fir to future climate (RCP8.5 2050s) inferred from Gradient Forests [GFoffset, (a, c)] and 
RONA (b, c) cross-variety models. Population point sizes in (a, b) are scaled to offset rank (lowest offset have smallest sizes). Population 
point sizes in (b) are from the median ranks across environments used to estimate RONA, which were chosen based on ranking p-values 
from paired t-tests between current and future climate. In (c), a 1:1 line is given to infer relative changes in rank between methods. Rank 
numbers are given within circles of (a, b). Populations are colored as in Figure 1. Code to create these figures can be found in SN 15.17. For 
populations overlaid onto a GFoffset model interpolated across the species range, see Figure S12.
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any degree of confidence in informing population-  or site-specific 
management decisions. At a minimum, they will need to consider 
the extent to which the phenotypes and life stage used in validation 
are associated with total lifetime fitness (Fitzpatrick et al., 2018), as 
well as how the common garden environment interacts with these 
phenotypes. For instance, while jack pine 52-year DBH may capture 
elements of fitness related to growth, it may miss aspects of fitness 
more directly related to survival and reproduction. Size phenotypes 
such as DBH may also be more indicative of competitive ability in 
the planted common garden environment than fitness in the wild. 
Carefully considering the phenotype used to validate model pre-
dictions can help avoid ambiguous situations where it is unclear if 
poor performance is due to the choice of validation phenotype or 
the model itself. Varying the validation environment will also incor-
porate uncertainty into predictions of maladaptation to climates that 
may differ from those used in validation.

Fourth, the populations used to validate offset models should 
be relevant to the scale at which management is applied (Q3). For 
instance, had we chosen the cross-variety model to apply toward 
management recommendations in Douglas-fir, but not assessed per-
formance at finer spatial scales, we may have concluded that the 
validation score from the cross-variety model was indicative of a 
well-performing model across all populations from both the interior 
and coastal varieties of Douglas-fir. However, this would have mis-
guided prioritization of populations within these groups, as the per-
formance of the cross-variety model decreased at the more relevant 
within-variety level for coastal and interior of Douglas-fir. Future 
sampling designs should take genetic structure into consideration 
and ensure that sampling is relevant to the scope of management 
within each genetic group. Studies should also explore the influ-
ence of highly diverged populations (e.g., those isolated from large 
contiguous ranges) in biasing model estimates. While it is important 
to consider differences between training and test data (see below), 
genetic and climatic differences among populations used in training 
should also be explored to quantify biases introduced by differen-
tiated input data, such as with leave-one-out sensitivity analyses 
(Géron,  2022; Lever et  al.,  2016; Lotterhos et  al.,  2022; Rellstab 
et al., 2021).

Fifth, the relationship between the data used in training and 
prediction must be assessed to understand model generalizability 
and therefore the ability to make predictions on novel conditions 
not seen in training. Understanding model generalizability is funda-
mental for using predictive models, and it is well known that many 
mathematical models may not predict well to novel conditions rela-
tive to data used in training (Géron, 2022; Lever et al., 2016; Raschka 
& Mirjalili, 2019), and this applies to genomic models as well (Fraslin 
et  al.,  2022; Ma & Zhou,  2021; Rogers & Holland,  2021; Schrider 
& Kern,  2018; Wientjes et  al.,  2013). For the data used here, the 
transplant sites used to validate models for coastal Douglas-fir and 
jack pine were within the climate space of the training populations. 
However, the Vancouver common garden was well outside the cli-
mate space of the interior Douglas-fir populations (Figure S23) which 
had the poorest performance among the three taxa assessed. While 

this observation could be due to weaker local adaptation in interior 
Douglas-fir, it may instead indicate that projections of maladapta-
tion to future climates that differ greatly from climate data used in 
training may produce less robust estimates. With many marine and 
terrestrial environments in the mid-21st century having no 20th 
century climate analog (Lotterhos et al., 2021; Mahony et al., 2017), 
offset methods may be effective only for short-term predictions.

4.2  |  Ignoring offset model assumptions may lead 
to misguided inference

Even with some promising results here, genomic offset estimates 
should be used with caution to guide management decisions, as 
there are circumstances under which these estimates may be mis-
leading with respect to true population maladaptation even under 
otherwise ideal circumstances (e.g., in the presence of local adapta-
tion). In addition to having the necessary data for accurate genomic 
offset predictions, not all species (or groups of populations) are 
ideally suited for these models. These models assume that current 
genotype–climate relationships are due solely to local adaptation 
and will remain optimal in the future, and that deviations from these 
relationships will result in decreased fitness (Capblancq et al., 2020; 
Rellstab et al., 2021). Because these models assume that the change 
of the environment is immediate (Fitzpatrick & Keller, 2015; Láruson 
et al., 2022), they also ignore other dynamics that could either allevi-
ate or exacerbate maladaptation experienced by future populations, 
such as gene flow (and perhaps subsequent swamping) of adaptive 
alleles, changes in competition or disease, or the redundancy in the 
genetic architecture underlying fitness and therefore the number 
of available routes to adaptation (Capblancq et  al.,  2020; Láruson 
et al., 2020; Rellstab et al., 2021). Because these factors could alter 
population trajectories between current and projected climate sce-
narios, offset models may be most accurate for short-term in  situ 
predictions, or for predictions most relevant to near-term assisted 
gene flow initiatives.

4.3  |  Future work is needed to identify the 
domain of offset applicability

There is still considerable uncertainty in the usefulness of genomic 
offset methods for natural populations (Capblancq et  al.,  2020; 
Láruson et al., 2022; Rellstab et al., 2021). Investigators are fur-
ther limited when applying genomic offsets across taxa because 
the domain of applicability—that is, the circumstances under which 
a method is acceptably accurate (Lotterhos et al., 2022)—remains 
largely undefined. For offset methods, these circumstances en-
compass the evolutionary history of targeted populations as well 
as the design of experiments used to train and validate the model 
itself. Even with ideal data, offset inferences will be affected by 
both evolutionary factors (e.g., drift, pleiotropy, and the drivers 
and strength of divergent selection) and experimental parameters 
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(e.g., sampling locations, Láruson et al., 2022). The circumstances 
under which we should expect multiple offset methods to agree 
are also unclear, as they are likely to be affected to different de-
grees for any given set of experimental and evolutionary param-
eters. For example, Láruson et  al.  (2022) highlight how genetic 
drift can mislead GFoffset magnitude and rank estimates. This may 
be driving some patterns observed here, for example, the extent 
to which the western-most group of jack pine is inferred to be the 
most maladapted to future climate change (Figure 4a; Figure S11) 
or the extent to which the cross-variety model of Douglas-fir in-
fers the southeastern groups of the interior variety to be most 
maladapted as well (Figures  5c and 6b; S21.9). Because of this, 
we hesitate to recommend either GFoffset or RONA over the other, 
given their similar performance as well as the uncertainty of how 
their performance may differ in other situations. Instead, we rec-
ommend further exploration of their performance under a wide 
variety of scenarios, as has been noted elsewhere (Capblancq 
et al., 2020; Rellstab et al., 2021). A more detailed understanding 
of how genomic offset methods interact with complex multivari-
ate selection, admixture, lesser degrees of (or variation in) local 
adaptation, and prediction to novel and strongly differentiated 
climates also warrant further attention.

4.4  |  Concluding remarks

Ultimately, defining the domain of applicability for genomic offset 
methods will likely require extensive evaluation of simulated and 
empirical data. Until such a domain is well defined, future work 
estimating genomic offsets will need to thoroughly explore the re-
sults by varying input loci, climate data, populations used in training, 
and environments used for validation to understand how sensitive 
the offset estimations are to the data at hand as well as how gen-
eralizable these models are when predicting to novel data. Such 
exploration should follow best practices (Géron, 2022; Raschka & 
Mirjalili, 2019) and will require training of many dozens of models for 
a single dataset, which will provide ample targets for model selection 
and tuning. Doing so will lead to a more complete understanding 
of the performance of these models, and the circumstances under 
which they will fail.

While our validation results show promise, our future projections 
for Douglas-fir show ambiguous results (Figure 5c,d; Figure S13b). 
Because of this, we do not recommend using offset estimates to 
strongly influence prescriptions to guide climate-adaptive manage-
ment practices for individual populations until these approaches are 
better understood and validated. It therefore may be more prudent 
to work under the assumption that all populations are at some risk of 
maladaptation due to climate change. Even so, offset methods could 
guide ex situ conservation collections to capture genetic diversity 
from populations predicted to be most at risk of climate-related ex-
tirpation, for example, for seed banks or living collections. However, 
because of the expectation that model performance will suffer as 
the environments between training and predictions diverge, we 

strongly caution against implementing widespread management ac-
tions based on inferences from offset models projected to climates 
strongly differentiated from current conditions (e.g., projections 
beyond several decades). While our offset projections for Douglas-
fir show ambiguity in model projections, monitoring populations 
for climate change responses could provide evidence that support 
one projection over the other and provide additional validation. In 
practice, there may be situations where the risks of inaction may 
outweigh risks associated with model uncertainty, and these could 
be weighed accordingly, particularly for threatened or endangered 
species. Finally, the value of common garden experiments for evalu-
ating risk of maladaptation should not be underestimated.
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