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1  | INTRODUC TION

Biological invasions are useful natural experiments with which to 
test hypotheses about evolutionary responses to novel environ‐
ments (Baker & Stebbins, 1965; Keller & Taylor, 2008; Suarez & 

Tsutsui, 2008). This applies to the original colonization event, as 
well as the post‐colonization range expansion characteristic of in‐
vasive species. Examples abound of phenotypic and genetic differ‐
entiation between native and introduced ranges, as well as across 
introduced ranges, for a variety of plant and animal taxa (reviewed 
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Abstract
The European gypsy moth (Lymantria dispar L.) was first introduced to Massachusetts 
in 1869 and within 150 years has spread throughout eastern North America. This 
large‐scale invasion across a heterogeneous landscape allows examination of the ge‐
netic signatures of adaptation potentially associated with rapid geographical spread. 
We tested the hypothesis that spatially divergent natural selection has driven ob‐
served changes in three developmental traits that were measured in a common gar‐
den for 165 adult moths sampled from six populations across a latitudinal gradient 
covering the entirety of the range. We generated genotype data for 91,468 single 
nucleotide polymorphisms based on double digest restriction‐site associated DNA 
sequencing and used these data to discover genome‐wide associations for each trait, 
as well as to test for signatures of selection on the discovered architectures. Genetic 
structure across the introduced range of gypsy moth was low in magnitude 
(FST = 0.069), with signatures of bottlenecks and spatial expansion apparent in the 
rare portion of the allele frequency spectrum. Results from applications of Bayesian 
sparse linear mixed models were consistent with the presumed polygenic architec‐
tures of each trait. Further analyses indicated spatially divergent natural selection 
acting on larval development time and pupal mass, with the linkage disequilibrium 
component of this test acting as the main driver of observed patterns. The popula‐
tions most important for these signals were two range‐edge populations established 
less than 30 generations ago. We discuss the importance of rapid polygenic adapta‐
tion to the ability of non‐native species to invade novel environments.
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by Coulatti & Lau, 2015; Dlugosch & Parker, 2008; Dlugosch, 
Anderson, Braasch, Cang, & Gillette, 2015). These examples define 
a paradox, known as the “genetic paradox of invasion,” whereby 
the establishment and subsequent expansion into novel environ‐
ments presumably dominated by populations of locally adapted 
native species should be extremely unlikely, yet there are abun‐
dant examples of widespread and successful invasions of exotic 
species across all forms of life (Allendorf & Lundquist, 2003). At 
its core, this paradox, if indeed it even exists (Estoup et al., 2016), 
is defined by a set of evolutionary questions related to the effi‐
ciency of natural selection, created through novel environmental 
drivers acting upon genetic variation within nonequilibrium popu‐
lations, to effect evolutionary change (see figure 3 in Estoup et al., 
2016; cf. Baker & Stebbins, 1965). Here, we use the invasion of the 
European gypsy moth (Lymantria dispar L.) across eastern North 
America to test hypotheses about the genetic architecture of local 
adaptation at range margins.

Range margins, even for invasive species, can present novel and 
extreme environments relative to those in the range centre or area 
of initial colonization (Keller & Taylor, 2008). A standing body of 
literature has examined the consequences of evolution within pe‐
ripheral populations of species near their range limits (reviewed by 
Eckert, Samis, & Lougheed, 2008). Peripheral populations often dis‐
play reduced variation within populations (e.g., Blows & Hoffmann, 
1993), greater differentiation among populations (e.g., Kunin et 
al., 2009) and increased levels of segregating deleterious variation 
(e.g., Lohmueller et al., 2008). Although these trends have been 
noted repeatedly and have led to the conclusion that adaptive evo‐
lution within peripheral populations can be limited (but see, for ex‐
ceptions, Hill, Griffiths, & Thomas, 2011; Therry, Nilsson‐Örtman, 
Bonte, & Stoks, 2014), additional work has identified differences 
between leading and lagging peripheral populations as reposito‐
ries for fitness‐related standing genetic variation (Rehm, Olivas, 
Stroud, & Feeley, 2015; e.g., Keller, Chhatre, & Fitzpatrick, 2017). 
Peripheral populations can also display greater independence 
among phenotypic traits in multivariate space, leading to reduc‐
tions in constraints imposed by fitness trade‐offs (Caley, Cripps, & 
Game, 2013; Paccard, Buskirk, & Willi, 2016), as well as maintain 
quantitative genetic variation for fitness‐related phenotypic traits 
even when neutral genetic markers display reductions in diversity 
(Dlugosch et al., 2015). While it is unclear if these trends universally 
apply to invasive species (Guo, 2014), as many of these patterns 
use assumptions about stabilities and relationships between abun‐
dances and the structure of geographical ranges (Sagarin, Gaines, & 
Gaylord, 2006), it is reasonable to expect that post‐colonization ex‐
pansion by invasive species will result in exposure to environments 
that provide novel and often strong selection pressures (reviewed 
by Coulatti & Lau, 2015).

Examples of rapid adaptation to novel environments are fre‐
quent within the literature (e.g., Cook & Saccheri, 2013; Crossley, 
Chen, Groves, & Schoville, 2017; Grant & Grant, 2008). These exam‐
ples exhibit a range in underlying genetic architectures, from those 
characterized by a few major‐effect loci (e.g., van't Hof, Edmonds, 

Dalikova, Marec, & Saccheri, 2011) to those of many underlying loci 
(e.g., Lamichhaney et al., 2015). Theoretical studies and reviews have 
highlighted that rapid adaptation to novel environments can proceed 
rapidly via soft sweeps acting on polygenic architectures composed 
of alleles already present within populations (e.g., Berg & Coop, 
2014; Pritchard & Di Rienzo, 2010; Le Corre & Kremer, 2012). This 
occurs for several reasons. For example, there is no lag between en‐
vironmental change and the origin of adaptive variation, because the 
alleles are already segregating within populations. Novel mutations 
that have large effects on phenotypes are also likely to be disad‐
vantageous and swept from the population (Orr, 2005), while alleles 
comprising standing genetic variation are probably found within 
multiple individuals and/or populations and have been previously 
sorted based on their fitnesses across various genetic backgrounds 
(reviewed by Barrett & Schluter, 2008; Hermisson & Pennings, 2005; 
Hermisson & Pennings, 2017). Thus, rapid adaptation via soft sweeps 
is probably very common for traits underlain by polygenic architec‐
tures. Moreover, these sweeps are often driven not by strong allele 
frequency differences, but instead by subtle, coordinated allele fre‐
quency changes across populations (Chevin & Hospital, 2008; Jain & 
Stephan, 2015,2017).

Ectothermic organisms, like the gypsy moth, experience fluctu‐
ations in development rate, mass, fecundity and survival as a direct 
response to temperature. Typically, these responses have negative 
fitness consequences when exposed to temperatures over their 
optimum (Kingsolver & Woods, 1997; Limbau et al., 2017; Logan, 
Casagrande, & Liebhold, 1991; Thompson et al., 2017). For ex‐
ample, range retraction along the southern invasion front of the 
gypsy moth coincides with geographical areas having a higher fre‐
quency of supraoptimal temperatures (Tobin, Gray, & Liebhold, 
2014), which implies that these temperatures impart fitness costs. 
Controlled laboratory experiments, moreover, have shown that 
gypsy moths reared at higher temperatures experience reduced 
pupal mass and increased development times (Logan et al., 1991; 
Thompson et al., 2017), both of which are likely to lower fitness 
(Calvo & Molina, 2005; Honěk, 1993; Myers, Malakar, & Cory, 2000). 
Low temperatures have also been shown to have negative conse‐
quences for development in European gypsy moth, with some pop‐
ulations displaying patterns of adaptive variation (Fält‐Nardmann, 
Klemola, et al., 2018; Fält‐Nardmann, Ruohomäki, Tikkanen, & 
Neuvonen, 2018). In general, these traits are also heritable, with 
those related to development time and pupal mass having herita‐
bilities varying from 0.181 to 0.703 (Janković‐Tomanić & Lazarević, 
2012; Lazarević, Nenadović, Janković‐Tomanić, & Milanović, 
2008; Lazarević, Perić‐Mataruga, Ivanović, & Anđelković, 1998; 
Lazarević, Perić‐Mataruga, Stojković, & Tucić, 2002; Lazarević, 
Peric‐Mataruga, & Tucić, 2007; Páez, Fleming‐Davies, & Dwyer, 
2015). Thus, phenotypic traits related to pupal mass and develop‐
ment time could be the targets of natural selection, particularly at 
the invasion fronts where thermal regimes limit larval and pupal 
development.

The combination of its broad geographical range, known lo‐
cality and year of introduction and extremely well‐documented 
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spatial spread (Bogdanowicz, Mastro, Prasher, & Harrison, 1997; 
Grayson & Johnson, 2017; Liebhold, Halverson, & Elmes, 1992; 
Liebhold, Mastro, & Schaefer, 1989; Tobin, Bai, Eggen, & Leonard, 
2012; Wu et al., 2015) make the gypsy moth an ideal model for 
examining the genetic architecture of local adaptation in re‐
sponse to recent range expansion and novel environmental pres‐
sures. Here, we focus on a set of populations sampled across the 
invaded latitudinal range of North America. Using a combination 
of genomics, common garden experimentation (i.e., the raising 
and study of individuals in a standard environment) and evolu‐
tionary genetic inferences, we test the hypothesis that range 
edge populations of gypsy moth are experiencing divergent se‐
lective pressures on polygenic traits related to thermal tolerance 
during larval and pupal development. Our results indicate that 
locally adapted populations at the range margins evolved rap‐
idly (<30 generations) through subtle and coordinated allele fre‐
quency shifts at trait‐associated loci. We extend our results to a 

discussion of rapid evolution and its consequences for biological 
invasions.

2  | MATERIAL S AND METHODS

2.1 | Field collections and laboratory rearing

We established populations of gypsy moth from across the latitudi‐
nal range of the invasion in North America (Figure 1) in autumn 2011 
by collecting egg masses from Quebec (QC32 and QC93), New York 
(NY), Virginia (VA1 and VA2) and North Carolina (NC). Collections 
were made between 2011 and 2012. Within populations, sampling of 
more than one egg mass in close spatial proximity (e.g., the same tree) 
was avoided, to minimize collections enriched for close relatives. All 
collected egg masses (n = 25–33 per population) were surface steri‐
lized with 10% formalin before rearing to remove pathogens. To pro‐
tect against confounding maternal effects from population density or 

F I G U R E  1   Sampling locations relative 
to the timing of county‐wide quarantine 
year across the introduced range of 
European gypsy moth (Lymantria dispar) 
in eastern North America. Sample sizes 
for each sampled population are given in 
Table 1

TA B L E  1   Summary of sampled populations

 

Population

NC VA1 VA2 NY QC93 QC32

Latitude 36.44913 38.65761 38.85747 42.89777 46.90826 47.25098

Longitude −76.02467 −77.46360 −77.69500 −74.09476 −70.80611 −79.40605

Sample size 21 32 32 22 25 33

Mass(SD) 0.299 (0.044) 0.296 (0.086) 0.274 (0.037) 0.296 (0.049) 0.252 (0.056) 0.300 (0.043)

PDT(SD) 10.762 (1.513) 10.438 (1.294) 10.188 (1.330) 11.136 (1.521) 9.960 (1.457) 10.788 (1.556)

LDT(SD) 66.571 (4.872) 63.531 (4.928) 61.781 (4.526) 61.955 (3.337) 60.320 (4.037) 62.242 (3.046)

HOBS(SD)
0.244 (0.192) 0.246 (0.167) 0.239 (0.181) 0.241 (0.190) 0.245 (0.191) 0.253 (0.180)

HEXP(SD)
0.248 (0.176) 0.261 (0.165) 0.249 (0.174) 0.246 (0.175) 0.249 (0.177) 0.258 (0.170)

Note. HEXP, expected heterozygosity; HOBS, observed heterozygosity; SD, standard deviation.
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host quality (Rossiter, 1991), we reared each population through one 
generation on northern red oak (Quercus rubra L.) foliage in an outdoor 
array under ambient temperatures at Lafayette Road Field Station in 
Syracuse, NY (43.0481°N, 76.1474°W) during spring 2012. Egg masses 
from 20–40 females were broken apart and mixed together to homog‐
enize genetic diversity and 100–150 neonates were drawn from this 
pool at hatching. First and second instars were initially housed in large 
plastic Petri dishes and transferred as 3rd instars to 18.9‐L plastic 
buckets covered with a spun polyester mesh. Larvae were exclusively 
fed fresh cut Q. rubra foliage every 3–4 days until pupation, with all 
larvae from all populations receiving foliage from the same tree on 
the same day. Emerged adults were placed in paper‐lined buckets for 
mating and oviposition of eggs for the next generation. Resulting eggs 
were overwintered under outdoor conditions at the rearing location.

2.2 | Phenotypic measurements

In spring 2013, the F2 generation eggs for all six populations were 
transported to Virginia Commonwealth University, Richmond, VA, 
for a common garden experiment conducted at the VCU Rice Rivers 
Center (37.3265°N, 77.2056°W). Overwintering eggs were allowed to 
hatch in synchrony with budburst of Q. rubra at each site. Hatched lar‐
vae were selected at random to minimize relatedness and placed into 
a large plastic Petri dish with fresh foliage, changed every 3–4 days 
gathered from the same tree on the same day. After reaching 3rd in‐
star, larvae were reallocated to four replicate 18.9‐L plastic buckets 
and covered with a spun polyester mesh fabric for each population 
at densities of n = 30 larvae per bucket. Each cup/bucket contained 
Q. rubra stems with leaves placed in a 3.9‐L plastic jug filled with water. 
Larvae were checked for pupation daily, and fully sclerotized pupae 
were weighed and stored in paper lined 74‐ml plastic cups with snap 
cap lids punched with pinholes for air exchange. Pupae were checked 
daily for adult emergence with sex and date being recorded. Only 
males were included in analyses because they are the sex captured 
in pheromone‐baited traps placed in an extensive network across the 
invasion front to monitor spread annually (Sharov, Leonard, Liebhold, 
Roberts, & Dickerson, 2002). The phenotypes measured were pupal 
mass (Mass) in grams, larval development time (LDT: hatching to pu‐
pation) in days and pupal duration (PD: pupation to adult emergence) 
in days, as these are commonly measured components of early life 
survival for gypsy moth (see Introduction1 and Discussion).

2.3 | Library preparation, sequencing and 
data processing

We used a two‐step approach to discover and characterize variants 
across the gypsy moth genome: (a) creation of a reference assembly 
from a single caterpillar and (b) reduced representation genotype‐
by‐sequencing of 192 moths sampled from six natural populations 
(Table 1; Figure 1). Total genomic DNA was extracted from all 192 
moths using Qiagen DNeasy Blood and Tissue kits (Qiagen) following 
the manufacturer's protocol. A reference assembly was constructed 
from a reference caterpillar (source population = NY), while the other 

192 moths were subjected to a double digest restriction site‐associ‐
ated DNA sequencing (ddRADseq) protocol (Parchman et al., 2012; 
see also Picq et al., 2018 for a similar approach). A single run of 
paired‐end reads on the Illumina HiSeq 2,500 platform at the Virginia 
Commonwealth University Nucleic Acids Research Facility was used 
to generate data for the reference assembly. The read pairs were each 
evaluated along sliding windows of 5 bp. If the mean quality score in 
this window was below 30, the read was trimmed at that beginning of 
the window. If the shortened read was less than 50% of the length of 
the original read, it was discarded along with its pair. Additionally, if 
20% of the bases in a read had quality values less than 30, it was dis‐
carded along with its pair. For ddRADseq libraries, 96 samples were 
multiplexed and each library (n = 2 libraries) was sequenced using a 
single lane on the Illumina HiSeq 2500 platform at the same facil‐
ity. Quality of all reads was initially assessed using fastqc (Babraham 
Bioinformatics 2015) and subsequently processed with ipython (Pérez 
& Granger, 2007) and biopython (Cock et al., 2009). The same protocol 
was used to filter single‐end reads resulting from sequencing of the 
multiplexed, ddRADseq libraries as the reference assembly.

2.4 | Creation and annotation of a 
reference assembly

The quality‐filtered reads from the paired‐end sequencing library, 
which represented a single moth, were used as input to the masurca 
assembler (Zimin et al., 2017), with the following parameters changed 
from the defaults: mean/standard deviation of read length: 400/60, 
use linking mates: 1: cgwErrorRate: 0.15. The quality of the assembly 
was assessed using the statistics generated by the assembly process, 
as well as with busco (Simão, Waterhouse, Ioannidis, Kriventseva, 
& Zdobnov, 2015) and quast (Gurevich, Saveliev, Vyahhi, & Tesler, 
2013). For busco, the assembly was evaluated against pre‐computed 
Augustus (Stanke & Waack, 2003) meta‐parameters of three species 
(Aedes, Heliconius and Drosophila) and the busco Arthropoda lineage 
profile using a tblastn e‐value cut‐off of 0.001. For quast, the soft‐
ware was executed using the following options (‐‐gene‐finding, ‐‐eu‐
karyote, ‐‐glimmer, ‐‐min‐contig 200).

The maker genome annotation pipeline (Cantarel et al., 2008) 
version 2.31.8 was used to predict the gene content of the as‐
sembly (Campbell, Holt, Moore, & Yandell, 2014). Auxillary pro‐
grams that were used as part of the maker suite were NCBI 
blast + version 2.2.28 (Camacho et al., 2009), repeatmasker version 
open‐4.0.5 (Smit, Hubley, & Green, 2015), exonerate version 2.2.0 
(Slater & Birney, 2005), snap version 2006–07‐28 (Korf, 2004), 
genemark‐es version 3.49 (Ter‐Hovhannisyan, Lomsadze, Chernoff, 
& Borodovsky, 2008), augustus version 3.2.2 (Stanke, Steinkamp, 
Waack, & Morgenstern, 2004), trnascan‐se version 1.3.1 (Lowe & 
Eddy, 1997) and probuild version 2.36. The Heliconius melpomene 
version 2 genome was provided as both expressed sequence 
tag (EST) and protein homology evidence in addition to the au‐
gustus supplied heliconius_melpomene1 set of species parame‐
ters. Resulting annotations were used to define categories (i.e., 
annotation categories) for contigs containing single nucleotide 
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polymorphisms (SNPs) corresponding to genic, varying distances 
to genes (500, 1,000 and 1,500 bp), intergenic, repetitive and un‐
known (Supporting Information Appendix S1).

2.5 | Variant calling and genotype determination

fastq files resulting from single‐end sequencing of the ddRADseq li‐
braries were demultiplexed using gbsx (Herten, Hestand, Vermeesch, 
& Houdt, 2015) version 1.2, allowing two mismatches (‐mb 2). We 
allowed two mismatches during this process, because our barcodes 
were designed to have four mismatches (Parchman et al., 2012), as 
a sensible compromise between stringency and the need to achieve 
enough coverage to call genotypes for each sample. Demultiplexed 
reads were subsequently mapped to a reference assembly of 277,541 
contigs using bowtie2 version 2.2.4 (Langmead & Salzberg, 2012), with 
flags ‐‐local ‐‐very‐sensitive‐local. The flag ‐‐N, however, was set 
to 1 from the default of 0. These options were used to increase the 
sensitivity of the alignment steps (see the bowtie manual for more 
information). The resulting SAM files were converted to their binary 
equivalent (BAM), sorted and indexed using samtools version 1.2 (Li 
et al., 2009). picard version 1.112 (https://broadinstitute.github.io/
picard) was used to annotate each BAM with read group and sample 
informational tags. Sequence variants were called from the resulting 
BAM files using samtools and bcftools version 1.3.1 (Li et al., 2009). 
The variants were filtered using vcftools (Danecek et al., 2011), 
such that only SNPs that were biallelic (‐‐min‐alleles = 2, ‐‐max‐al‐
leles = 2) and present in at least 50% of the samples (‐‐max‐miss‐
ing = 0.5) were kept. Additional filtering using custom python scripts 
removed samples lacking sufficient genetic and phenotypic data 
(n = 27 moths removed). The filtering protocol kept SNPs with minor 
allele frequency (MAF) of at least 1%, depth across samples (DP) 
≥100 or DP < 1,500, alternate allele call quality (QUAL) ≥20, and the 
absolute value of Wright's F < 0.50. These filters were selected to 
minimize the occurrence of variants derived from paralogous loci 
(e.g., DP < 1,500, Wright's F), remove variants arising from errors 
during mapping or sequencing (e.g., QUAL, MAF), and remove those 
for which the imputation steps for some statistical analyses (e.g., 
principal components analysis [PCA]) would require imputing more 
than half the data (e.g., DP ≥ 100, missing data threshold of 0.50).

To account for uncertainty in genotype determination for the 
genome‐wide association analyses, weighted genotypes (GW) were 
calculated by converting the Phred‐scaled likelihoods in the VCF file 
to weights (Wi) for the 0, 1 and 2 genotype calls (Gi):

where the Wi were scaled by the sum of the three likelihoods. 
Considering our liberal threshold for the percentage of samples with 
missing data (50%), a custom imputation protocol was also imple‐
mented. Allele frequencies within each population were estimated 
for each SNP from the weighted genotypes, Hardy–Weinberg equi‐
librium (HWE) was assumed and the HWE proportions were as‐
signed as the weights in the equation above to determine a weighted 

genotype call for a specific sample at a specific SNP. This procedure 
was applied only to those samples for which the Phred‐scaled likeli‐
hoods for an SNP were zero or undefined because of a complete lack 
of data. Imputed data of this form were used solely for the genome‐
wide association analyses.

2.6 | Patterns of phenotypic and genetic variation

Differentiation among populations for phenotypic traits was as‐
sessed using multivariate analysis of variance (MANOVA). Statistical 
significance of the MANOVA model was determined using Wilk's 
λ as the test statistic and α = 0.05 as a significance threshold. We 
subsequently used one‐way analysis of variance (ANOVA) to assess 
differentiation separately for each phenotypic trait. Post hoc tests 
for the differences in population means for each phenotypic trait 
were performed using Tukey's honest significant difference (HSD) 
method assuming α = 0.05. We treated populations as a fixed effect 
for statistical hypothesis testing (α = 0.05), but as a random effect 
for estimation of variance components. Variance components were 
used to construct a measure of phenotypic differentiation akin to hi‐
erarchical F‐statistics. Specifically, we used the ratio of the variance 
accounted for by populations to the total phenotypic variance (PST) 
as a measure of phenotypic differentiation. Parametric bootstrap‐
ping (n = 1,000 replicates) was used to derive confidence intervals 
around point estimates of PST. All analysis was conducted using the 
stats version 3.4.0 and lme4 version 1.1–13 l ibraries in r version 3.4.0 
(Bates, Mächler, Bolker, & Walker, 2015; R Core Team, 2017).

Patterns of genetic variation within and among populations 
were described using standard population genetic indices: hetero‐
zygosities (observed and expected heterozygosities, HOBS and HEXP, 
respectively) and hierarchical F‐statistics. We also quantified the 
number and frequency of private alleles within populations (i.e., al‐
leles unique to a single population) to identify recent demographic 
events (Luikart, Allendorf, Cornuet, & Sherwin, 1998). Estimates of 
hierarchical F‐statistics were made for each SNP and all SNPs com‐
bined using the hierfstat version 0.04–22 library in r. Confidence 
intervals (95%) for multilocus estimates were generated using boot‐
strapping across SNPs (n = 1,000 replicates). For comparison, ge‐
netic structure was also assessed using PCA following Patterson, 
Price, and Reich (2006).

We used redundancy analysis (RDA) and Mantel tests to inves‐
tigate the effects of genetics and geography on phenotypic trait 
values. We partitioned the explainable variance in phenotypic trait 
values by genetics and geography using standard partitioning meth‐
ods (Borcard, Legendre, & Drapeau, 1992), which required definition 
of full (i.e., phenotypic trait values ~ genetics +geography) and partial 
RDA (pRDA) models (e.g., phenotypic trait values ~ genetics | geog‐
raphy). Geography was quantified using latitude and longitude, with 
both measures centred and standardized prior to analysis, while ge‐
netic effects were quantified using PCs derived from PCA. The sta‐
tistical significance of all RDA models (α = 0.05), as well as RDA axes 
within these models, was tested using a permutation‐based ANOVA 
with 999 permutations (Legendre & Legendre, 2012). For comparison, 

GW=

3
∑

i=1

Gi×Wi

https://broadinstitute.github.io/picard
https://broadinstitute.github.io/picard
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Mantel tests were conducted using pairwise FST as the genetic dis‐
tances, great circle distances (km) as the geographical distances and 
Euclidean distances, calculated from centred and standardized phe‐
notypic trait values, as the phenotypic trait distances. Statistical sig‐
nificance of the observed correlation values was assessed using 999 
permutations (see Legendre, Fortin, & Borcard, 2015 for concerns 
with hypothesis tests of Mantel's r as they relate to hypothesis tests 
of the original data). All analyses were performed using functions in 
the vegan version 2.4–3 library of r (Oksanen et al., 2017).

2.7 | Genome‐wide association analyses

We used Bayesian sparse linear mixed models (BSLMMs) to associ‐
ate phenotypes with genotypes at 85,162 of the 91,468 SNPs (Zhou, 
Carbonetto, & Stephens, 2013). We dropped 6,306 SNPs from this 
analysis because the amount of missing data for these SNPs, even 
with the imputation scheme described above, was above a threshold 
of 5%. This was due to cases where all samples, comprising at least 
5% of the total sample size, were missing in at least one population 
for an SNP, so that population‐level allele frequencies were not avail‐
able for imputation. In this framework, multi‐SNP models, where the 
set of predictive SNPs is itself a parameter, are fit to each phenotype 
using a Bayesian implementation of a sparse linear mixed model. In 
this model, effects of SNPs are partitioned into polygenic effects (α) 
and sparse effects (β). The total effect of each SNP is then the sum of 
its polygenic effect and its sparse effect weighted by the posterior in‐
clusion probability (PIP) of it in the multi‐SNP model (γ). Confounding 
due to relatedness among individuals was addressed through use of a 
relatedness matrix (K), which is an n × n matrix of standardized relat‐
edness estimates that is estimated from the genotype data.

Parameters of the BSLMMs were estimated using a Markov 
chain Monte Carlo (MCMC) procedure. The parameters of inter‐
est were the effect sizes for each SNP, as well as three hyper‐
parameters: the proportion of phenotypic variance explained by 
sparse and polygenic effects (PVE), the proportion of genetic 
variance explained by sparse effects (PGE) and the number of 
SNPs retained in the predictive model relating genotypes to phe‐
notypes (N). A separate BSLMM was fit to the normal‐quantile‐
transformed data for each phenotype using five MCMC chains. 
After a burn‐in of 1,000,000 steps, each MCMC chain was run 
for an additional 20,000,000 steps with parameter estimates 
sampled every 1,000 steps. Associated SNPs for each pheno‐
typic trait were defined as those in the upper (99.95%) and lower 
(0.05%) tails of the total effect size distribution across all 85,162 
analysed SNPs. Each phenotypic trait thus had a set of 86 asso‐
ciated SNPs, 43 of which had negative effects of the minor al‐
lele on the phenotypic trait value and 43 of which had positive 
effects. Fitting and analysis of BSLMMs were conducted using 
the gemma software (Zhou & Stephens, 2012), with assessment of 
convergence for the MCMC carried out using the coda library in r 
(Plummer, Best, Cowles, & Vines, 2006). Parameter and hyperpa‐
rameter estimates are given as the average across five indepen‐
dent MCMC runs.

2.8 | Evolutionary genetics of associated loci

Given that the sampled populations are distributed across broad 
environmental gradients known to affect the phenotypic traits we 
measured (Logan et al., 1991; Thompson et al., 2017; Tobin et al., 
2014), we tested for signatures of divergent natural selection across 
populations using the approach developed by Berg and Coop (2014). 
r scripts for this analysis were obtained from https://github.com/
jjberg2/PolygenicAdaptationCode. Using the total effect sizes es‐
timated for each associated SNP, their frequencies within each 
population and a variance–covariance matrix of allele frequencies 
across populations describing neutral processes (e.g., genetic drift), 
Berg and Coop (2014) defined an excess variance test using a statis‐
tic closely related to QST. This statistic, QX, is defined by two terms. 
One term quantifies allele frequency differences among popula‐
tions (i.e., an FST component), while the other term quantifies link‐
age disequilibrium (LD) among loci across populations (i.e., an LD 
component). The latter encapsulates subtle and coordinated allele 
frequency shifts across populations. The null distribution of QX is 
created through sampling of SNPs unassociated with each of the 
phenotypic traits. These SNPs are matched to those associated with 
the phenotypic traits based on minor allele frequency (25 bins rang‐
ing from 0 to 0.50) and are used to estimate the variance–covariance 
matrix describing neutral processes and the null distribution of ge‐
netic values used to estimate a null distribution of QX. We followed 
Berg and Coop (2014) and used 20,000 SNPs for estimation of the 
variance–covariance matrix and 10,000 SNPs to create the null dis‐
tribution of QX. The variance–covariance matrix was estimated 10 
times (i.e., 10 matrices each estimated using 20,000 random SNPs), 
with the average being used as the final representation of neutral ge‐
netic structure for this methodology. Ten sets of null genetic values 
(n = 10,000 values per set) were also estimated for each phenotypic 
trait, so that the final null distributions of the test statistics were 
built from 100,000 values. We performed one‐tailed tests for the 
observed value of QX being larger than expected by chance, includ‐
ing each of its components, based on these null distributions using 
a significance threshold of 0.05. Prior to analysis, we randomly se‐
lected one SNP per contig in the assembly to minimize confounding 
of LD signals due to physical linkage for a total of 38,658 SNPs.

We used Z‐statistics from the method of Berg and Coop (2014) 
to examine which populations were contributing most to signals of 
divergent natural selection across populations. This test is defined 
by a null model in which the mean and variance of genetic values 
for a phenotypic trait within a focal population are predicted from 
the values observed in a reference set of populations and the vari‐
ance–covariance matrix describing relationships among them. A Z‐
statistic is then estimated from the fit of the predicted values to the 
observed values in the focal population. Thus, rejection of this null 
model amounts to the focal population being an outlier relative to 
predictions based on the reference set of populations. Although this 
statistic is a standard normal deviate, we tested its significance using 
a two‐tailed test based on the permutation approach as described 
for QX assuming a significance threshold of 0.05. For our analysis, 

https://github.com/jjberg2/PolygenicAdaptationCode
https://github.com/jjberg2/PolygenicAdaptationCode
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each population was dropped in turn (i.e., became the focal popula‐
tion), with the remaining five populations acting as the reference set.

3  | RESULTS

3.1 | Patterns of phenotypic and genetic variation

Phenotypic trait values varied across populations (Figure 2), with 
multivariate phenotypic trait values differing across populations 
(MANOVA: Wilk's λ = 0.663, F15,433.81 = 4.647, p = 2.695 × 10–8). 
Phenotypic trait values were moderately correlated across individ‐
uals (Pearson's r: −0.524 to 0.299). Inspection of results from one‐
way ANOVAs revealed that multivariate differentiation was driven 
largely by LDT (F5,159 = 4.324, p = 0.001), while Mass (F5,159 = 3.062, 
p = 0.011) and PD (F5,159 = 2.272, p = 0.049) were only marginally 
differentiated among populations. This was consistent with post 
hoc Tukey HSD tests, where there were four significant pairwise 
population differences for LDT (all involving NC except for the NC–
VA1 comparison). In contrast, none to only a few of the population 
comparisons for PD (n = 0) and Mass (n = 2, QC93–QC32 and VA1–
QC93) were significant. When taken together, these results were 
also consistent with point estimates of PST, where populations ac‐
counted for 12.13% (95% confidence interval [CI]: 0.30%–31.06%) 
of the variance for LDT, 7.17% (95% CI: 0.00%–20.00%) of the vari‐
ance for Mass and 4.52% (95% CI: 0.00%–15.40%) of the variance 
for PD.

Genetic diversity within populations was geographically based 
(Figure 3) and indicative of a historical demography involving expan‐
sion from the point of initial introduction in Massachusetts. Mean ob‐
served heterozygosity (across SNPs) was positively correlated with 
latitude (Pearson's r = 0.569) and negatively correlated with longi‐
tude (Pearson's r = −0.307). Mean expected heterozygosity was neg‐
atively correlated with longitude (Pearson's r = −0.605) and weakly 
correlated with latitude (Pearson's r = 0.061). Heterozygosities also 
varied across annotation categories, with higher mean values out‐
side of gene regions and in repeat regions (Supporting Information 
Figure S1). Variance within populations across loci for these mea‐
sures also displayed geographical trends, although none of the cor‐
relations was statistically significant. All populations had private 
alleles (n = 1,921 SNPs with private alleles). The NY population had 
the fewest SNPs with private alleles (n = 200), whereas the QC32 
population had the most (n = 684). In general, the number of SNPs 
with private alleles increased with geographical distance away from 
the NY population (Supporting Information Figure S2). The opposite 
pattern was apparent for the frequencies of private alleles, which 
were highest in the NY population (mean private allele frequency: 
0.137, range = 0.025–0.444). The exception to this trend was the 
NC population (mean private allele frequency: 0.137, range = 0.025–
0.344), with all other populations other than NY having lower mean 
frequencies of private alleles.

Genetic diversity was structured across populations, with the 
multilocus estimate of FST being 0.0690 (95% CI: 0.0686–0.0695). 
Single locus values of FST ranged from 0 to 0.483, with the majority 

F I G U R E  2   Phenotypic trait variation across populations is 
consistent with stronger differentiation for larval development 
time (LDT) relative to mass or pupal duration (PD). Whiskers for 
boxplots extend to 1.5 times the interquartile range. The horizontal 
grey band in each plot represents the 95% confidence interval 
for the global phenotypic trait mean (i.e., for all 165 samples). (a) 
Differentiation for mass across populations, which are ordered 
from south (left) to north (right), is weak to moderate, with marginal 
evidence of a latitudinal cline (Pearson's r = −0.356). A single 
outlier in the VA1 population with a mass of 0.671 g has been 
omitted from this graph, although all analysis includes this sample. 
(b) Differentiation for PD across populations, which are ordered 
from south (left) to north (right), is weak and not structured across 
latitude (Pearson's r = −0.079). (c) Differentiation for LDT across 
populations, which are ordered from south (left) to north (right), 
is moderate and structured across latitude (Pearson's r = −0.600). 
None of the correlations of phenotypic trait means to either 
geographical variable, however, was statistically significant
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(63.54%) of SNPs having single locus estimates of FST equal to or 
less than the multilocus value. Pairwise estimates of FST were struc‐
tured geographically, with a statistically significant and posi‐
tive relationship between FST and geographical distance (Mantel 
test: Pearson's r = 0.459, p = 0.039). Multilocus values for FST also 

varied by annotation category, with lower values within gene re‐
gions (Supporting Information Figure S1). These patterns were also 
apparent in the PCA, where populations were clustered in the space 
defined by the first two principal components (PCs). These PCs ex‐
plained 6.66% of the variance across samples and were correlated 

F I G U R E  3   Patterns of genetic variation are structured among populations and are often clinal. (a) Central tendencies for the distributions 
of observed (HOBS) and expected (HEXP) heterozygosities do not differ greatly in magnitude among populations, although they are statistically 
different (Kruskal–Wallis tests: p < 0.001). Moderate correlations (Pearson's r) with latitude and longitude are also apparent for the means 
(given above each plot) and medians (not shown) of these distributions, although none of these correlations is statistically significant. (b) 
Populations of gypsy moths are differentiated genetically based on 91,468 SNPs, with the multilocus FST value (FST

ml) statistically greater 
than zero, and patterns of differentiation are consistent with isolation‐by‐distance (inset, Pearson's r = 0.459). Values of FST for single 
SNPs (FST

sl) ranged from 0 to 0.483. (c) Allele frequency spectra, based on 0.10 bins for the global minor allele within each population, are 
not strongly differentiated, as expected given the moderate value of FST

ml. The maximum of each bin is given as its label on the x‐axis. (d) 
Principal components analysis (PCA) is consistent with differentiation among populations that is structured along latitudinal and longitudinal 
gradients. The top two principal components (PCs) jointly explain ~6.66% of the genetic variance (PVE). Scores for individual moths on each 
PC were scaled by the eigenvalue of that PC for plotting [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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with latitude and longitude (Pearson's r [latitude, longitude] = PC1: 
0.650, 0.572; PC2: −0.414, 0.159; p < 0.05 for all correlations). 
Tracy–Widom tests of eigenvalues revealed that the top 17 PCs had 
p‐values < 0.05. Collectively, these 17 PCs explained 28.72% of the 
variance across individuals.

Phenotypic trait values were significantly correlated with ge‐
ography and genetic variation (RDA: F19,145 = 2.088, p = 0.001, 
R2 = 0.215, R2

adj = 0.112; Table 2; Figure 4). All three RDA axes were 
statistically significant (p < 0.010). The first two RDA axes explained 
87.18% of the total explainable variance (i.e., 87.18% of R2 = 0.215). 
Partitioning the contribution of each type of variable to the over‐
all explanatory power of the full RDA model revealed that genetic 
variation, as opposed to geography, had the largest pure effects on 
phenotypic trait variation (pure geography: 25.16%, pure genet‐
ics: 74.84%, confounded effects: 0.00%). This was consistent with 
the correlations among phenotypic, genetic and geographical dis‐
tances, where geographical distances were significantly correlated 
with genetic distances (Figure 3b), phenotypic distances were sig‐
nificantly correlated with genetic distances (Mantel test: Pearson's 
r = 0.511, p = 0.031), but phenotypic distances were moderately, and 
not significantly, correlated with geography (Mantel test: Pearson's 
r = 0.171, p = 0.273). The pRDA models relating phenotypic variation 
to genetic variation conditional on geography and geography con‐
ditional on genetic variation were each statistically significant. The 
explanatory power between these two models, however, differed 
3.10‐fold (Table 2).

3.2 | Genome‐wide association analyses

The structure of the relationship matrix (K), as assessed using its ei‐
genvectors, was strongly correlated with the structure of the PCA 
(Appendix S2), and thus we used K as the sole source of correc‐
tions for confounding due to relatedness and population structure 
when fitting BSLMMs. Estimates of hyperparameters from gemma 
were consistent with the expected polygenic architecture for each 
phenotypic trait (Table 3). Values of PVE, an approximation of nar‐
row‐sense heritability (h2), ranged from 0.375 (Mass) to 0.514 (LDT). 
Additionally, the number of SNPs retained in the BLSMM for each 
phenotypic trait, upon which estimates of PVE are based, ranged 
from 103 (Mass and PD) to 105 (LDT). However, PIP did not exceed 
0.03 for any SNP for any phenotypic trait, which is consistent with 
different draws from the posterior distribution of BSLMMs for each 
phenotypic trait containing different sets of SNPs on average, even 

when the number of SNPs was similar across draws. As such, the 
estimates of PGE had credible intervals approximately spanning 
the entire range of the prior distribution and posterior distributions 
that were relatively flat across the range of the prior distribution 
(Supporting Information Figures S3 and S4, Appendix S3).

Total effect sizes were on average small (Figure 5), with the ab‐
solute value of the mean total effect size per phenotypic trait rang‐
ing from 6.27 × 10–5 (Mass) to 8.34 × 10–5 (LDT), and varied across 
annotation categories (Supporting Information Figure S5). Reported 
effect sizes, however, were on scale of units of standard deviations 
in the normal quantile transformed phenotypic trait data. Total ef‐
fect sizes were moderately correlated across SNPs for LDT and PD 
(Pearson's r = −0.462) and LDT and Mass (Pearson's r = 0.242), but 
only weakly for PD and Mass (Pearson's r = –0.052). Absolute ef‐
fect sizes, including polygenic effects only (αi) and sparse effects 
only (βi), were correlated with PIP values (Pearson's r > 0.48), with 
correlations for sparse effects (0.48 < Pearson's r < 0.62) slightly 
greater than those for polygenic effects (0.48 < Pearson's r < 0.59). 
The two components of the total effect size for each SNP (i.e., the 
polygenic effect [αi] and the sparse effect [βiγi]) were positively 
correlated for each phenotypic trait (Mass: Pearson's r = 0.963; PD: 
Pearson's r = 0.963; LDT: Pearson's r = 0.975). On average, the esti‐
mated polygenic effect accounted for 55% (Mass) to 58% (LDT) of 
the total effect size per SNP for each phenotypic trait. Only 5,992 
(LDT) to 7,750 (Mass) SNPs had differences between the sign of 
their effect for αi and βiγi. All of these SNPs had effect sizes close 
to zero.

We defined sets of 86 SNPs associated with each phenotypic 
trait as those within the lower 0.05% or upper 99.95% tails of the total 
effect size distribution. Each set of 86 SNPs represented 70 (Mass), 
71 (PD) or 69 (LDT) unique contigs in the assembly. Overlap between 
sets of associated SNPs across phenotypic traits was minimal, with 
only one (Mass and PD) to five (PD and LDT) associated SNPs shared 
between phenotypic traits. Associated SNPs had absolute values of 
their total effect sizes 10.84‐fold (Mass) to 14.33‐fold (PD) larger 
than the absolute value of the mean total effect size across all SNPs 
for each phenotypic trait. Patterns of genetic structure across popu‐
lations for these sets of SNPs did not differ strongly from the global 
FST value (i.e., multilocus FST ranging from 0.051 [PD] to 0.062 [Mass] 
relative to the global value of 0.069; Supporting Information Figure 
S6) nor did the mean absolute value of allele frequency differences 
across populations (i.e., 0.137 [PD] to 0.147 [Mass] for associated 
SNPs relative to the global value of 0.124; Supporting Information 
Figure S7). Patterns of missing data or heterogeneity in estimation 
across MCMC runs, moreover, did not differentiate associated SNPs 
(Supporting Information Appendix S4; Figures S8–S10). These sets 
of SNPs differed relative to randomly selected SNPs, however, in the 
larger magnitudes of the correlation between allele frequency dif‐
ferences and phenotypic trait differences across populations and the 
consistency of the sign of this correlation across SNPs (Supporting 
Information Appendix S5; Figure S11). On average, associated SNPs 
also had larger contributions of sparse effects to their total effect 
sizes (63%–70%) relative to all SNPs (55%–58%).

TA B L E  2   Summary of redundancy analyses (RDAs) examining 
relationships among phenotypic trait (phen), and genetic (gen) and 
geographical (geo) data

Model F (df) p R2 R2
adj

phen ~ geo + gen 2.088 (19,145) 0.001 0.215 0.112

phen ~ gen + 
Condition(geo)

1.938 (17,145) 0.001 0.178 0.087

phen ~ geo + 
Condition(gen)

3.331 (2,145) 0.012 0.036 0.028
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3.3 | Evolutionary genetics of associated loci

The aforementioned patterns of associated SNPs suggest coordi‐
nated allele frequency shifts across populations contributing to local 
adaptation. To test this hypothesis explicitly, we used the method 
of Berg and Coop (2014). All three sets of associated SNPs were 
consistent with the action of divergent natural selection across 
populations, with the observed value of the QX statistic being larger 
than expected under a null model of genetic drift for all three phe‐
notypic traits (Figure 5; Table 4). This was most apparent for LDT 
(QX = 42.561, p < 0.0001) and least apparent for PD (QX = 22.191, 
p = 0.0006). The driver of this result was the LD component of QX, 
with only this component being statistically significant. This result 
was not an artefact of physical linkage, as SNPs located on the same 
contig in the assembly were pruned prior to this analysis. We also 

tested the way in which we defined sets of associated SNPs on 
these results (Supporting Information Appendix S6; Figures S12–
S15). The QX statistic and both of its components were always larger 
than those from random sets of SNPs for Mass and LDT (Supporting 
Information Figures S12 and S13). For PD, however, one of the ran‐
dom sets of SNPs had a larger estimate of QX, which was driven by 
a value of the LD component approximately as large as that listed in 
Table 4. A similar pattern was observed when more extreme tails of 
the total effect size distribution were used (Supporting Information 
Figures S14 and S15). Thus, it appears that LDT and Mass are the 
two phenotypic traits most consistent with the action of divergent 
natural selection.

The populations contributing most to this signal of divergent 
natural selection were the NC and QC93 populations (Table 5). The 
Z‐statistic was statistically significant for NC for all three phenotypic 

F I G U R E  4   Phenotypic trait variation 
is affected by geography and genetics, 
as quantified using redundancy analysis 
(RDA). Shown is the triplot from the full 
RDA model with sampled moths coloured 
by populations. Summary statistics of 
model fit and statistical significance 
are given in the upper left corner. 
Geographical variables are given as black 
vectors, while genetic variables are given 
as blue vectors. Phenotypic traits are 
positioned in red text. The top two RDA 
axes explained 87.17% of the total effect 
(R2 = 0.215). Distributions of RDA axis 
scores by population are given above (Axis 
1) and to the right (Axis 2) of the triplot. 
The results of Kruskal–Wallis tests, which 
were used to assess differentiation of 
RDA axis scores by population, are given 
in each panel [Colour figure can be viewed 
at wileyonlinelibrary.com]

Hyperparameter Mass PD LDT

PVE 0.338 (0.076–0.671) 0.387 (0.010–0.766) 0.528 
(0.246–0.783)

PGE 0.125 
(5.75E‐05–0.948)

0.440 
(3.15E‐04–0.947)

0.066 
(6.67E‐05–0.945)

N 103 (77–285) 103 (80–289) 105 (78–284)

Shown are approximate maximum a posteriori (MAP) estimates and 95% highest probability 
densities (HPDs). Estimates for each MCMC run are given in Table S1, with assessment of 
convergence across runs located in Tables S2 and S3.

TA B L E  3   Combined estimates of 
hyperparameters describing the 
architecture of each phenotypic trait are 
consistent with their expected polygenic 
bases

www.wileyonlinelibrary.com
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traits and QC93 for Mass and LDT. This was consistent with these 
populations being the most different in their phenotypic trait dis‐
tributions for Mass and LDT (Figure 2) and score distributions on 
RDA axis 1 (Figure 4). Given the values of the Z‐statistics for these 

populations, as well as the patterns in Figures 2 and 4, divergent nat‐
ural selection appears to have resulted in larger masses and longer 
LDT in the NC population and the opposite in the QC93 population. 
In no case was the observed Z‐statistic in the 10 random data sets 

F I G U R E  5   Outliers from genome‐wide association studies for each trait were identified using the 0.0005 and 0.9995 quantiles (dashed 
vertical lines) of the total effect size, which were also those SNPs with the largest PIPs (a–c). In all volcano plots, associated loci are identified 
as open circles. Associated SNPs for each phenotypic trait also had elevated values for the QX statistic relative to null distributions (grey 
histograms), with the LD component accounting for the majority of magnitude for the QX statistic (d–f). Inset pie charts are scaled to the 
maximum value of the QX statistic, which was for LDT. *p < 0.05, **p < 0.005, ***p < 0.0005

TA B L E  4   Summaries of statistical tests (QX statistic) for divergent natural selection across populations are consistent with linkage 
disequilibrium (LD) among associated SNPs driving statistically significant, adaptive patterns

Phenotypic trait FST (95% CI) QX (p‐value) FST component (p‐value)
LD component 
(p‐value)

Mass (n = 70) 0.057 (0.043–0.072) 24.151 (<0.0001) 4.365 (0.9660) 19.786 (<0.0001)

PD (n = 71) 0.055 (0.041–0.068) 22.191 (0.0006) 6.063 (0.1476) 16.128 (0.0007)

LDT (n = 69) 0.065 (0.051–0.079) 42.561 (<0.0001) 5.382 (0.4250) 37.179 (<0.0001)

Values for FST are given as the multilocus value calculated from variance components for the SNPs in the associated set for each phenotypic trait. 
Confidence intervals (CIs) for these multilocus values were generated via bootstrap resampling across SNPs (n = 1,000 replicates). The p‐values for 
statistical tests of QX and its components were based on null distributions created from resampling unassociated SNPs matched on minor allele 
frequency (see Materials and Methods). Prior to analysis, the set of associated SNPs for each phenotypic trait was thinned to one SNP per contig in 
the assembly to avoid physical linkage confounding patterns of LD.
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more extreme for LDT or Mass in either the NC or the QC93 popula‐
tion (Supporting Information Figures S13 and S15).

4  | DISCUSSION

Rapid adaptation can occur in the presence of strong selection pres‐
sures in novel environments (Jain & Stephan, 2017). Here, we dem‐
onstrate this using an ecological genomic analysis of gypsy moth 
populations sampled along a latitudinal transect. Our main conclu‐
sion is that populations of gypsy moths at the southern and north‐
ern range limits of this species, each established no longer than 30 
generations ago (i.e., generation time is 1 year and colonization of 
these areas is within the last 30 years), are experiencing divergent 
selection pressures on polygenic traits related to thermal tolerance 
and that these selection pressures manifest as coordinated allele fre‐
quency shifts across populations. Our conclusion was supported by 
robust signals even in the presence of patterns of missing data, as 
well as several modelling assumptions.

4.1 | Coordinated allele frequency shifts underlie 
phenotypic trait differentiation

Evidence for spatially varying or divergent selection acting upon 
polygenic traits is accumulating for model and nonmodel species 
(Babin, Gagnaire, Pavey, & Bernatchez, 2017; Berg, Zhang, & Coop, 
2017; Crossley et al., 2017; Gagnaire & Gaggiotti, 2016; He et al., 
2016; Lind, Menon, Bolte, Faske, & Eckert, 2018; Pritchard, Pickrell, 
& Coop, 2010; Rose, Bay, Morikawa, & Palumbi, 2018; Turchin et 
al., 2012). Here, we explicitly tested for signals of rapid adaptation 
in novel environments based on coordinated allele frequency shifts 
within a polygenic architecture across populations of an invasive 
species. Empirical patterns were consistent with theoretical predic‐
tions for strong divergent selection acting on a fitness‐related poly‐
genic trait (Chevin & Hospital, 2008; Jain & Stephan, 2015, 2017; Le 
Corre & Kremer, 2003,2012; see Supporting Information Table S4). 
These theoretical expectations are based on several assumptions, so 
that agreement between data patterns and theoretical predictions 

alone is not sufficient for making strong conclusions. Additional evi‐
dence justifying the validity of each assumption, however, strength‐
ens and contextualizes our conclusions.

First, selection pressures are assumed to be strong, so that the 
fitness effects of deviations from local optima are large. Although 
we did not measure fitness variation directly, the three phenotypic 
traits we assayed have strong fitness effects when trait values de‐
viate from temperature optima (Honěk, 1993; Logan et al., 1991; 
Myers et al., 2000). Larval development time and PD are tempera‐
ture dependent in the gypsy moth (Casagrande, Logan, & Wallner, 
1987) and are important phenotypic traits for completing develop‐
ment within the growing season and for synchrony in adult emer‐
gence to promote mate‐finding (Contarini, Onufrieva, Thorpe, Raffa, 
& Tobin, 2009; Gray, 2004). Pupal mass is also strongly correlated 
with fecundity, where increased size results in a larger number 
of eggs (Calvo & Molina, 2005; Honěk, 1993; Myers et al., 2000). 
Second, phenotypic optima are assumed to differ across popula‐
tions, with the relevant importance of coordinated allele frequency 
shifts increasing as these optima diverge (Le Corre & Kremer, 2003). 
Previous experimental work supports the idea that temperature op‐
tima differ across gypsy moth populations. Caterpillar growth and 
development are more resilient to high temperatures in southern rel‐
ative to northern populations (Thompson et al., 2017). Third, pheno‐
typic trait variation is assumed to be determined by numerous small 
effect loci. If we equate the number of potentially causative loci to 
the number of SNPs retained in the multi‐SNP models constructed 
in gemma (N), which is sensible as the model PVE numerically ap‐
proximated established heritability estimates for these phenotypic 
traits, then the number of causative loci for each trait is on the order 
of at least 100 (Table 3). Note, however, that without full genomic 
coverage this number is likely to be underestimated. Estimated total 
effect sizes, moreover, for associated SNPs were small, as assessed 
in units of trait standard deviations for the normal quantile trans‐
formed data, and approximately equally determined by polygenic 
and sparse effects. Last, levels of gene flow are assumed to be high, 
so that genetic diversity within populations undergoing strong se‐
lection pressures is restored through gene flow among populations 
with different optima. Historical rates of gypsy moth spread are 

Population

Mass PD LDT

Z‐statistic (p‐value) Z‐statistic (p‐value) Z‐statistic (p‐value)

NC 2.914 (0.0046) 4.289 (0.00004) 5.413 (<0.00001)

VA1 −0.854 (0.402) 0.658 (0.517) −0.197 (0.804)

VA2 −2.432 (0.018) −1.887 (0.053) −1.578 (0.118)

NY 0.559 (0.651) −0.734 (0.569) 0.013 (0.765)

QC93 −2.749 (0.011) −0.615 (0.536) −4.174 (0.00004)

QC32 1.293 (0.187) −1.601 (0.095) 0.462 (0.724)

The p‐values were generated from null distributions built from unassociated SNPs matched on 
minor allele frequency (see Materials and Methods). Results with p < 0.05 are in bold type. Prior to 
analysis, the set of associated SNPs for each phenotypic trait was thinned to one SNP per contig in 
the assembly to avoid physical linkage confounding patterns of LD.

TA B L E  5   Population‐specific tests of 
adaptive evolution following Berg and 
Coop (2014) reveal that the strongest 
signals of divergent natural selection are 
due to marginal populations located on 
the northern (QC93) and southern (NC) 
range margins, especially for LDT and 
Mass



2218  |     FRIEDLINE et al.

cyclical and have been well characterized, where low spread rates 
in the early 20th century align with predications based solely on 
natural dispersal (~2.5 km/year based on larval ballooning and male 
flight; Liebhold et al., 1992). However, large‐scale expansion at a 
rate of ~ 21 km/year began in the mid‐1960s, with increased anthro‐
pogenic transportation of egg masses implicated as an important 
source of long‐distance dispersal, increased spread rates and prob‐
able substantial gene flow among populations (Liebhold, Sharov, & 
Tobin, 2007; Liebhold & Tobin, 2006). Well‐known human vectors 
for the movement of gypsy moth life stages (e.g., firewood trans‐
port, house moves, recreational vehicles) have been correlated with 
spread rates (Whitmire & Tobin, 2006), so that gene flow among 
populations is expected to be a common occurrence and is likely to 
be at reasonably high magnitudes, even at broad spatial scales.

4.2 | Ecophysiological roles of LDT and Mass in 
environmental adaptation

Much attention has been given to the evolution of geographical pat‐
terns in body size (e.g., Blackburn, Gaston, & Loder, 1999, Chown 
& Gaston, 2010). The most common relationship described is the 
occurrence of larger body sizes with increasing latitude, although 
the underlying mechanisms remain of debate (Atkinson & Sibly, 
1997). A decrease in body size with latitude, however, has also been 
documented in several species of insects (Blanckenhorn & Demont, 
2004; Chown & Gaston, 1999). This pattern occurs when genera‐
tion time constitutes a significant portion of the growing season. In 
this case, season length places constraints on the time and resources 
available for growth and development and can result in selection for 
maturation at a smaller body size (Chown & Klok, 2003; Roff, 1980). 
This is indeed the scenario for the gypsy moth as a univoltine spe‐
cies, where larval and pupal development must be completed in a 
single growing season and eggs require an obligate overwinter dia‐
pause. At the northern range edge, lower temperatures for growth 
and limitations in season length (Gray, 2004; Tobin, Cremers, Hunt, 
& Parry, 2016) are probable explanations for selection in the QC93 
population for shorter development times and small individuals at 
maturation. Selection in northern populations for shorter develop‐
ment time based on growing season constraints is also consistent 
with work showing latitudinal patterns in hatching phenology, where 
northern populations hatch relatively earlier than southern popula‐
tions when reared in a common environment, presumably cuing to 
start the growing season early even at the risk of suboptimal hatch‐
ing conditions (Śniegula, Gołąb, & Johansson, 2016). Similar adjust‐
ments to juvenile development in lower temperatures were noted 
by McEvoy, Higgs, Coombs, Karacetin, and Starcevich (2012) for the 
cinnabar moth (Tyria jacobaeae L.) as it colonized the cooler Cascade 
Mountains from warmer lowland environments. The lack of such 
patterns in the QC32 population, however, implies that broad‐scale 
temperature and growing season length alone are not the sole de‐
terminants of fitness at the northern range margin (e.g., other cli‐
mate variables, microclimates). For example, differences in snow 
cover due to topographical features may interact with temperature 

to drive this discrepancy. Future data collected with an appropriate 
study design, however, would be needed to test this idea rigorously.

Conversely, season length does not place constraints on com‐
pleting development for southern populations, outside of exposure 
to supraoptimal temperatures. For insects, increases in size reflected 
by pupal mass have clear benefits for fecundity, and extending de‐
velopment time provides a longer period for feeding and growth be‐
fore maturation (Taylor, 1981). At the southern invasion front, the 
effects from supraoptimal temperatures have been found to be sub‐
lethal (Faske et al., 2019) and the amount of heat in a given year is 
highly variable, resulting in rapid temporal shifts in range dynamics 
from expansion to contraction (Tobin et al., 2014). While the thermal 
conditions in this region can be suboptimal, our findings suggest that 
adaptive changes for increased heat tolerance are occurring with 
selection for increased development time and size. Indeed, a heat 
challenge experiment using the same gypsy moth populations found 
that the NC population had higher survival at a constant supraop‐
timal rearing temperature as compared to populations QC and NY 
(see Figures 1 and 2 in Thompson et al., 2017). Mortality events, as 
evidenced for the gypsy moth by localized range retractions at the 
southern range front (Tobin et al., 2014), are also indications that 
selection pressures are strong, which could promote development of 
locally adapted populations conditional on the availability of adap‐
tive genetic variation (Kuparinen, Savolainen, & Schurr, 2010).

5  | LIMITATIONS AND CONCLUSIONS

Although we assessed the sensitivity of our conclusions to several 
common concerns about association mapping and selection scans, 
caution is warranted for several reasons. First, as with all reduced 
representation methods, only a portion of the genome was inter‐
rogated. For genome‐wide scans, including any form of association 
mapping, the degree to which the assayed portion of the genome 
captures causative segregating variation, directly or through link‐
age, determines the success of the scan (Lowry et al., 2017a,2017b). 
Based on the size of our assembly relative to this expected genome 
size (750.66 Mb vs. 1.03 Gb, see Petitpierre, 1996), we only inter‐
rogated ~ 20% (i.e., contigs with SNPs covered 26.87% of the length 
of the full assembly, which covered ~ 72.88% of the expected size) 
of the genome for the gypsy moth. The expectation that we missed 
a portion of relevant variation, however, does not preclude the result 
that we discovered some of the relevant variation (Catchen et al., 
2017; Lowry et al., 2017a,2017b; McKinney, Larson, Seeb, & Seeb, 
2017). For example, some of the annotated genes containing associ‐
ated SNPs have putative functions with recognized impacts on in‐
sect development and physiology during development (Supporting 
Information Appendix S7; Table S5). Second, we used only a single 
set of samples to discover and characterize associated SNPs (cf. Berg 
& Coop, 2014). Although this approach unites estimates of effect 
sizes for associated SNPs to the samples in which divergent selec‐
tion is being examined, it could also inflate the prevalence of false 
positives due to the fact that the SNPs associated with phenotypic 



     |  2219FRIEDLINE et al.

traits already survived corrections for confounding in the gemma 
analysis. The magnitudes of the QX statistic for LDT and Mass, how‐
ever, could not be replicated in the 10 null sets of SNPs selected in 
similar ways to the associated SNPs. Third, unaccounted for popula‐
tion structure, especially if it is confounded with axes of trait dif‐
ferentiation, could lead to false inference of polygenic selection 
(Berg et al., 2019). However, neither the magnitudes (i.e., multilocus 
FST) nor the patterns of differentiation (i.e., strength of IBD: associ‐
ated SNPs had Pearson r2 = 0.183–0.369 where the genome‐wide 
estimate was r = 0.459) were different for associated SNPs relative 
to genome‐wide patterns. Last, weak linkage of our markers with 
distant, large effect causal sites could appear as a polygenic archi‐
tecture affected by divergent selection, as signals of association and 
allele frequency differentiation diminish with the strength of linkage 
(Bulik‐Sullivan et al., 2015; Pritchard & Przeworski, 2001). Using data 
from contigs with at least two SNPs and fitting pairwise estimates 
of LD and physical distance to a theoretical expectation (see Hill 
& Weir, 1988), the rate of decay for LD with physical distance was 
rapid (Supporting Information Appendix S8; Table S6; Figure S16). 
Empirical patterns of LD decay, however, were quite variable around 
their expectations and across populations (Supporting Information 
Figures S17–S22), so that strong linkage (e.g., r2> 0.90) was observed 
at distances up to 10,000 bp. Thus, it is not unreasonable to expect 
that some of our associated SNPs are not just weakly linked to a 
handful of large‐effect loci.

Regardless of these limitations, our conclusions imply that poly‐
genic adaptation can contribute to range dynamics for invasive 
species. In the case of gypsy moth, it has long been considered a 
wide‐ranging generalist and few studies have considered the po‐
tential for adaptation in range‐edge populations. Understanding 
spread rates and the potential extent of the invasion for the gypsy 
moth is particularly important because the current range represents 
approximately only a third of forested habitat susceptible to inva‐
sion (McFadden & McManus, 1991). On a more general level, the 
results here imply that adaptive evolution in novel habitats can occur 
quickly through coordinated allele frequency shifts from standing 
genetic variation. How transient are the effects of these coordinated 
shifts to the overall architecture of local adaptation, however, re‐
mains an open question, with answers to this question having im‐
plications for the ability of adaptive changes to affect invasion and 
further spatial spread.
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